A dynamic contact problem with history-dependent operators

2016
journal article
article
10
dc.abstract.enIn this paper we present results on existence, uniqueness and convergence of solutions to the Cauchy problem for abstract first order evolutionary inclusion which contains two operators depending on the history of the solution. These results are applicable to a dynamic contact problem for viscoelastic materials with a normal compliance contact condition with memory and a friction law in which the friction bound depends on the magnitude of the tangential displacement. The proofs are based on recent results for hemivariational inequalities and a fixed point argument.pl
dc.affiliationWydział Matematyki i Informatykipl
dc.contributor.authorOgorzały, Justyna - 213906 pl
dc.date.accessioned2016-05-24T11:44:14Z
dc.date.available2016-05-24T11:44:14Z
dc.date.issued2016pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.physical107-132pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume124pl
dc.identifier.doi10.1007/s10659-015-9563-0pl
dc.identifier.eissn1573-2681pl
dc.identifier.issn0374-3535pl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/26938
dc.languageengpl
dc.language.containerengpl
dc.rightsUdzielam licencji. Uznanie autorstwa 3.0 Polska*
dc.rights.licenceCC-BY
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/legalcode*
dc.share.typeinne
dc.subject.enviscoelastic materialpl
dc.subject.enhistory-dependent operatorpl
dc.subject.enClarke subdifferentialpl
dc.subject.endynamical processpl
dc.subject.enfrictionpl
dc.subtypeArticlepl
dc.titleA dynamic contact problem with history-dependent operatorspl
dc.title.journalJournal of Elasticitypl
dc.typeJournalArticlepl
dspace.entity.typePublication
dc.abstract.enpl
In this paper we present results on existence, uniqueness and convergence of solutions to the Cauchy problem for abstract first order evolutionary inclusion which contains two operators depending on the history of the solution. These results are applicable to a dynamic contact problem for viscoelastic materials with a normal compliance contact condition with memory and a friction law in which the friction bound depends on the magnitude of the tangential displacement. The proofs are based on recent results for hemivariational inequalities and a fixed point argument.
dc.affiliationpl
Wydział Matematyki i Informatyki
dc.contributor.authorpl
Ogorzały, Justyna - 213906
dc.date.accessioned
2016-05-24T11:44:14Z
dc.date.available
2016-05-24T11:44:14Z
dc.date.issuedpl
2016
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.physicalpl
107-132
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
124
dc.identifier.doipl
10.1007/s10659-015-9563-0
dc.identifier.eissnpl
1573-2681
dc.identifier.issnpl
0374-3535
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/26938
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Udzielam licencji. Uznanie autorstwa 3.0 Polska
dc.rights.licence
CC-BY
dc.rights.uri*
http://creativecommons.org/licenses/by/3.0/pl/legalcode
dc.share.type
inne
dc.subject.enpl
viscoelastic material
dc.subject.enpl
history-dependent operator
dc.subject.enpl
Clarke subdifferential
dc.subject.enpl
dynamical process
dc.subject.enpl
friction
dc.subtypepl
Article
dc.titlepl
A dynamic contact problem with history-dependent operators
dc.title.journalpl
Journal of Elasticity
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.