Yunru Bai, Dumitru Motreanu, and Shengda Zeng*

Continuity results for parametric nonlinear singular Dirichlet problems

https://doi.org/10.1515/anona-2020-0005 Received September 5, 2018; accepted December 8, 2018.

Abstract: In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem depending on a parameter $\lambda > 0$ that was considered in [32]. Denoting by S_{λ} the set of positive solutions of the problem corresponding to the parameter λ , we establish the following essential properties of S_{λ} :

- (i) there exists a smallest element u_{λ}^{\star} in S_{λ} , and the mapping $\lambda \mapsto u_{\lambda}^{\star}$ is (strictly) increasing and left continuous:
- (ii) the set-valued mapping $\lambda \mapsto S_{\lambda}$ is sequentially continuous.

Keywords: Parametric singular elliptic equation, *p*-Laplacian, smallest solution, sequential continuity, monotonicity

MSC: 35J92, 35J25, 35P30

1 Introduction

Elliptic equations with singular terms represent a class of hot-point problems because they are mathematically significant and appear in applications to chemical catalysts processes, non-Newtonian fluids, and in models for the temperature of electrical conductors (see [3, 9]). An extensive literature is devoted to such problems, especially focusing on their theoretical analysis. For instance, Ghergu-Rădulescu [18] established several existence and nonexistence results for boundary value problems with singular terms and parameters; Gasínski-Papageorgiou [15] studied a nonlinear Dirichlet problem with a singular term, a (p-1)-sublinear term, and a Carathéodory perturbation; Hirano-Saccon-Shioji [21] proved Brezis-Nirenberg type theorems for a singular elliptic problem. Related topics and results can be found in Crandall-Rabinowitz-Tartar [7], Cîrstea-Ghergu-Rădulescu [6], Dupaigne-Ghergu-Rădulescu [10], Gasiński-Papageorgiou [17], Averna-Motreanu-Tornatore [2], Papageorgiou-Winkert [33], Carl [4], Faria-Miyagaki-Motreanu [11], Carl-Costa-Tehrani [5], Liu-Motreanu-Zeng [26] Papageorgiou-Rădulescu-Repovš [30], and the references therein.

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$ and let $y \in (0, 1)$ and 1 . Recently, Papageorgiou-Vetro-Vetro [32] have considered the following parametric nonlinear singular Dirichlet problem

$$\begin{cases}
-\triangle_p u(x) = \lambda u(x)^{-y} + f(x, u(x)) & \text{in } \Omega \\
u(x) > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(1)

Yunru Bai, Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30348 Krakow, Poland, E-mail: yunrubai@163.com

Dumitru Motreanu, Département de Mathématiques, Université de Perpignan, 66860 Perpignan, France, E-mail: motreanu@univ-perp.fr

*Corresponding Author: Shengda Zeng, Jagiellonian University in Krakow, Faculty of Mathematics and Computer Science, ul. Lojasiewicza 6, 30348 Krakow, Poland, E-mail: zengshengda@163.com. Tel.: +86-18059034172

DE GRUYTER

where the operator Δ_p stands for the *p*-Laplace differential operator

$$\Delta_p u = \operatorname{div} (|\nabla u|^{p-2} \nabla u)$$
 for all $u \in W_0^{1,p}(\Omega)$.

The nonlinear function f is assumed to satisfy the following conditions:

 $H(f): f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that for a.e. $x \in \Omega$, f(x,0) = 0, $f(x,s) \ge 0$ for all $s \ge 0$, and

(i) for every $\rho > 0$, there exists $a_{\rho} \in L^{\infty}(\Omega)$ such that

$$|f(x, s)| \le a_{\rho}(x)$$
 for a.e. $x \in \Omega$ and for all $|s| \le \rho$;

(ii) there exists an integer $m \ge 2$ such that

$$\lim_{s\to +\infty} \frac{f(x,s)}{s^{p-1}} = \widehat{\lambda}_m \text{ uniformly for a.e. } x\in\Omega,$$

where $\widehat{\lambda}_m$ is the *m*-th eigenvalue of $(-\Delta_p, W_0^{1,p}(\Omega))$, and denoting

$$F(x,t) = \int_{0}^{s} f(x,t) dt,$$

then

$$pF(x, s) - f(x, s)s \to +\infty$$
 as $s \to +\infty$, uniformly for a.e. $x \in \Omega$;

for some r > p, there exists $c_0 \ge 0$ such that (iii)

$$0 \leq \liminf_{s \to 0^+} \frac{f(x, s)}{s^{r-1}} \leq \limsup_{s \to 0^+} \frac{f(x, s)}{s^{r-1}} \leq c_0 \quad \text{uniformly for a.e.} \quad x \in \Omega;$$

for every $\rho > 0$, there exists $\hat{\xi}_{\rho} > 0$ such that for a.e. $x \in \Omega$ the function (iv)

$$s \mapsto f(x,s) + \widehat{\xi}_0 s^{p-1}$$

is nondecreasing on $[0, \rho]$.

The following bifurcation type result is proved in [32, Theorem 2].

Theorem 1. If hypotheses H(f) hold, then there exists a critical parameter value $\lambda^* > 0$ such that

- for all $\lambda \in (0, \lambda^*)$ problem (1) has at least two positive solutions $u_0, u_1 \in \text{int}(C_0^1(\overline{\Omega})_+)$;
- for $\lambda = \lambda^*$ problem (1) has at least one positive solution $u^* \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$; (b)
- for all $\lambda > \lambda^*$ problem (1) has no positive solutions. (c)

In what follows, we denote

$$\mathcal{L} := \{ \lambda > 0 : \text{problem (1) admits a (positive) solution} \} = (0, \lambda^*],$$

$$S_{\lambda} = \left\{ u \in W_0^{1,p}(\Omega) : u \text{ is a (positive) solution of problem (1)} \right\}$$

for $\lambda \in \mathcal{L}$. In this respect, Theorem 1 asserts that the above hypotheses, in conjunction with the nonlinear regularity theory (see Liebermann [24, 25]) and the nonlinear strong maximum principle (see Pucci-Serrin [34]), ensure that there holds

$$S_{\lambda} \subset \operatorname{int}(C_0^1(\overline{\Omega})_+).$$

Also, we introduce the set-valued mapping $\Lambda \colon (0, \lambda^{\star}] \to 2^{C_0^1(\overline{\Omega})}$ by

$$\Lambda(\lambda) = S_{\lambda}$$
 for all $\lambda \in (0, \lambda^{*}]$.

The following open questions need to be answered:

- 1. Is there a smallest positive solution to problem (1) for each $\lambda \in (0, \lambda^*]$?
- 2. If for each $\lambda \in (0, \lambda^*]$ problem (1) has a smallest positive solution u_{λ}^* , then the function $\Gamma \colon (0, \lambda^*] \to C_0^1(\overline{\Omega})$ with $\Gamma(\lambda) = u_{\lambda}^*$ is it monotone?
- 3. If for each $\lambda \in (0, \lambda^*]$ problem (1) has a smallest positive solution u_{λ}^* , then is the function Γ continuous ?
- 4. Is the solution mapping Λ upper semicontinuous?
- 5. Is the solution mapping Λ lower semicontinuous?

In this paper we answer in the affirmative the above open questions.

Theorem 2. Assume that hypotheses H(f) hold. Then there hold:

- (i) the set-valued mapping $\Lambda \colon \mathcal{L} \to 2^{C_0^1(\overline{\Omega})}$ is sequentially continuous;
- (ii) for each $\lambda \in \mathcal{L}$, problem (1) has a smallest positive solution $u_{\lambda}^{\star} \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$, and the map Γ from \mathcal{L} to $C_0^1(\overline{\Omega})$ given by $\Gamma(\lambda) = u_{\lambda}^{\star}$ is
 - (a) (strictly) increasing, that is, if $0 < \mu < \lambda \le \lambda^*$, then

$$u_{\lambda}^{\star} - u_{\nu}^{\star} \in \operatorname{int}(C_0^1(\overline{\Omega})_+);$$

(b) left continuous.

The rest of the paper is organized as follows. In Section 2 we set forth the preliminary material needed in the sequel. In Section 3 we prove our main results formulated as Theorem 2.

2 Preliminaries

In this section we gather the preliminary material that will be used to prove the main result in the paper. For more details we refer to [8, 13, 16, 19, 22, 28, 29, 35].

Let 1 and <math>p' be its Hölder conjugate defined by $\frac{1}{p} + \frac{1}{p'} = 1$. In what follows, the Lebesgue space $L^p(\Omega)$ is endowed with the standard norm

$$||u||_p = \left(\int\limits_{\Omega} |u(x)|^p dx\right)^{\frac{1}{p}}$$
 for all $u \in L^p(\Omega)$.

The Sobolev space $W_0^{1,p}(\Omega)$ is equipped with the usual norm

$$||u|| = \left(\int\limits_{\Omega} |\nabla u(x)|^p dx\right)^{\frac{1}{p}} \text{ for all } u \in W_0^{1,p}(\Omega).$$

In addition, we shall use the Banach space

$$C_0^1(\overline{\Omega}) = \{ u \in C^1(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega \}.$$

Its cone of nonnegative functions

$$C_0^1(\overline{\Omega})_+ = \left\{ u \in C_0^1(\overline{\Omega}) : u \ge 0 \text{ in } \Omega \right\}$$

has a nonempty interior given by

$$\operatorname{int}(C_0^1(\overline{\Omega})_+) = \left\{ u \in C_0^1(\overline{\Omega}) : u > 0 \text{ in } \Omega \text{ with } \frac{\partial u}{\partial n} \Big|_{\partial \Omega} < 0 \right\},$$

where $\frac{\partial u}{\partial n}$ is the normal derivative of u and $n(\cdot)$ is the outward unit normal to the boundary $\partial \Omega$.

Hereafter by $\langle \cdot, \cdot \rangle$ we denote the duality brackets for $(W^{1,p}(\Omega)^*, W^{1,p}(\Omega))$. Also, we define the nonlinear operator $A: W^{1,p}(\Omega) \to W^{1,p}(\Omega)^*$ by

$$\langle A(u), \nu \rangle = \int_{\Omega} |\nabla u(x)|^{p-2} (\nabla u(x), \nabla v(x))_{\mathbb{R}^N} dx \text{ for all } u, v \in W^{1,p}(\Omega).$$
 (2)

The following statement is a special case of more general results (see Gasiński-Papageorgiou [14], Motreanu-Motreanu-Papageorgiou [29]).

Proposition 3. The map $A: W^{1,p}(\Omega) \to W^{1,p}(\Omega)^*$ introduced in (2) is continuous, bounded (that is, it maps bounded sets to bounded sets), monotone (hence maximal monotone) and of type (S_+) , i.e., if $u_n \rightharpoonup u$ in $W^{1,p}(\Omega)$ and

$$\limsup_{n\to\infty}\langle A(u_n),u_n-u\rangle\leqslant 0,$$

then $u_n \to u$ in $W^{1,p}(\Omega)$.

For the sake of clarity we recall the following notion regarding order.

Definition 4. Let (P, \leq) be a partially ordered set. A subset $E \subset P$ is called downward directed if for each pair $u, v \in E$ there exists $w \in E$ such that $w \le u$ and $w \le v$.

For any $u, v \in W_0^{1,p}(\Omega)$ with $u(x) \le v(x)$ for a.e. $x \in \Omega$, we set the ordered interval

$$[u, v] := \{ w \in W_0^{1,p}(\Omega) : u(x) \le w(x) \le v(x) \text{ for a.e. } x \in \Omega \}.$$

For $s \in \mathbb{R}$, we denote $s^{\pm} = \max\{\pm s, 0\}$. It is clear that if $u \in W_0^{1,p}(\Omega)$ then it holds

$$u^{\pm} \in W_0^{1,p}(\Omega), \quad u = u^+ - u^-, \quad |u| = u^+ + u^-.$$

We recall a few things regarding upper and lower semicontinuous set-valued mappings.

Definition 5. Let X and Y be topological spaces. A set-valued mapping $F: X \to 2^Y$ is called

upper semicontinuous (u.s.c., for short) at $x \in X$ if for every open set $O \subset Y$ with $F(x) \subset O$ there exists (i) a neighborhood N(x) of x such that

$$F(N(x)) := \bigcup_{y \in N(x)} F(y) \subset O;$$

if this holds for every $x \in X$, F is called upper semicontinuous;

(ii) lower semicontinuous (l.s.c., for short) at $x \in X$ if for every open set $0 \subset Y$ with $F(x) \cap O \neq \emptyset$ there exists a neighborhood N(x) of x such that

$$F(y) \cap O \neq \emptyset$$
 for all $y \in N(x)$;

if this holds for every $x \in X$, F is called lower semicontinuous;

(iii) continuous at $x \in X$ if F is both upper semicontinuous and lower semicontinuous at $x \in X$; if this holds for every $x \in X$, F is called continuous.

The propositions below provide criteria of upper and lower semicontinuity.

Proposition 6. *The following properties are equivalent:*

 $F: X \rightarrow 2^Y$ is u.s.c.: (i)

(ii) for every closed subset $C \subset Y$, the set

$$F^{-}(C) := \{ x \in X \mid F(x) \cap C \neq \emptyset \}$$

is closed in X.

Proposition 7. *The following properties are equivalent:*

- (a) $F: X \rightarrow 2^Y \text{ is l.s.c.};$
- (b) if $u \in X$, $\{u_{\lambda}\}_{{\lambda} \in J} \subset X$ is a net such that $u_{\lambda} \to u$, and $u^{\star} \in F(u)$, then for each ${\lambda} \in J$ there is $u_{\lambda}^{\star} \in F(u_{\lambda})$ with $u_{\lambda}^{\star} \to u^{\star}$ in Y.

3 Proof of the main result

In this section we prove Theorem 2. We start with the fact that, for each $\lambda \in \mathcal{L}$, problem (1) has a smallest solution. To this end, we will use the similar technique employed in [12, Lemma 4.1] to show that the solution set S_{λ} is downward directed (see Definition 4).

Lemma 8. For each $\lambda \in \mathcal{L} = (0, \lambda^*]$, the solution set S_{λ} of problem (1) is downward directed, i.e., if $u_1, u_2 \in S_{\lambda}$, then there exists $u \in S_{\lambda}$ such that

$$u \le u_1$$
 and $u \le u_2$.

Proof. Fix $\lambda \in (0, \lambda^*]$ and $u_1, u_2 \in S_{\lambda}$. Corresponding to any $\varepsilon > 0$ we introduce the truncation $\eta_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ as follows

$$\eta_{\varepsilon}(t) = \begin{cases}
0 & \text{if } t \le 0 \\
\frac{t}{\varepsilon} & \text{if } 0 < t < \varepsilon \\
1 & \text{otherwise,}
\end{cases}$$

which is Lipschitz continuous. It results from Marcus-Mizel [27] that

$$\eta_{\varepsilon}(u_2-u_1)\in W_0^{1,p}(\Omega)$$

and

$$\nabla(\eta_{\varepsilon}(u_2-u_1))=\eta_{\varepsilon}'(u_2-u_1)\nabla(u_2-u_1).$$

Then for any function $v \in C_0^{\infty}(\Omega)$ with $v(x) \ge 0$ for a.e. $x \in \Omega$, we have

$$\eta_{\varepsilon}(u_2-u_1)v\in W_0^{1,p}(\Omega)$$

and

$$\nabla (\eta_{\varepsilon}(u_2-u_1)v)=v\nabla (\eta_{\varepsilon}(u_2-u_1))+\eta_{\varepsilon}(u_2-u_1)\nabla v.$$

Since u_1 , $u_2 \in S_{\lambda}$, there hold

$$\int\limits_{\Omega} |\nabla u_i(x)|^{p-2} \left(\nabla u_i(x), \nabla \varphi(x)\right)_{\mathbb{R}^N} dx = \lambda \int\limits_{\Omega} u_i(x)^{-y} \varphi(x) \, dx + \int\limits_{\Omega} f(x, u_i(x)) \varphi(x) \, dx \quad \text{for all } \varphi \in W_0^{1,p}(\Omega), \ i=1,2.$$

Inserting $\varphi = \eta_{\varepsilon}(u_2 - u_1)v$ for i = 1 and $\varphi = (1 - \eta_{\varepsilon}(u_2 - u_1))v$ for i = 2, and summing the resulting inequalities yield

$$\int_{\Omega} |\nabla u_1(x)|^{p-2} (\nabla u_1(x), \nabla (\eta_{\varepsilon}(u_2 - u_1)v)(x))_{\mathbb{R}^N} dx
+ \int_{\Omega} |\nabla u_2(x)|^{p-2} (\nabla u_2(x), \nabla ((1 - \eta_{\varepsilon}(u_2 - u_1))v)(x))_{\mathbb{R}^N} dx
= \int_{\Omega} [\lambda u_1(x)^{-y} + f(x, u_1(x))] (\eta_{\varepsilon}(u_2 - u_1)v)(x) dx
+ \int_{\Omega} [\lambda u_2(x)^{-y} + f(x, u_2(x))] (1 - \eta_{\varepsilon}(u_2 - u_1))v)(x) dx.$$

We note that

$$\begin{split} \int\limits_{\Omega} |\nabla u_1(x)|^{p-2} (\nabla u_1(x), \nabla \big(\eta_{\varepsilon}(u_2-u_1)v\big)(x))_{\mathbb{R}^N} \, dx \\ &= \frac{1}{\varepsilon} \int\limits_{\{0 < u_2-u_1 < \varepsilon\}} |\nabla u_1(x)|^{p-2} (\nabla u_1(x), \nabla (u_2-u_1)(x))_{\mathbb{R}^N} v(x) \, dx \\ &+ \int\limits_{\Omega} |\nabla u_1(x)|^{p-2} (\nabla u_1(x), \nabla v(x))_{\mathbb{R}^N} \eta_{\varepsilon} \big(u_2(x)-u_1(x)\big) \, dx \end{split}$$

and

$$\begin{split} \int\limits_{\Omega} |\nabla u_2(x)|^{p-2} (\nabla u_2(x), \nabla \left(\left(1 - \eta_{\varepsilon}(u_2 - u_1) \right) v \right)(x) \right)_{\mathbb{R}^N} dx \\ &= -\frac{1}{\varepsilon} \int\limits_{\{0 < u_2 - u_1 < \varepsilon\}} |\nabla u_2(x)|^{p-2} (\nabla u_2(x), \nabla (u_2 - u_1)(x))_{\mathbb{R}^N} v(x) dx \\ &+ \int\limits_{\Omega} |\nabla u_2(x)|^{p-2} (\nabla u_2(x), \nabla v(x))_{\mathbb{R}^N} \left(1 - \eta_{\varepsilon}(u_2(x) - u_1(x)) \right) dx. \end{split}$$

Altogether, we obtain

$$\int_{\Omega} |\nabla u_1(x)|^{p-2} (\nabla u_1(x), \nabla v(x))_{\mathbb{R}^N} \eta_{\varepsilon} (u_2(x) - u_1(x)) dx$$

$$+ \int_{\Omega} |\nabla u_2(x)|^{p-2} (\nabla u_2(x), \nabla v(x))_{\mathbb{R}^N} (1 - \eta_{\varepsilon} (u_2(x) - u_1(x))) dx$$

$$\geq \int_{\Omega} [\lambda u_1(x)^{-y} + f(x, u_1(x))] (\eta_{\varepsilon} (u_2 - u_1)v)(x) dx$$

$$+ \int_{\Omega} [\lambda u_2(x)^{-y} + f(x, u_2(x))] (1 - \eta_{\varepsilon} (u_2 - u_1))v)(x) dx.$$

Now we pass to the limit as $\varepsilon \to 0^+$. Using Lebesgue's Dominated Convergence Theorem and the fact that

$$\eta_{\varepsilon}ig((u_2-u_1)(x)ig) o \chi_{\{u_1 < u_2\}}(x) \ \ ext{for a.e.} \ x \in \Omega \ \ ext{as } \varepsilon o 0^+,$$

we find

$$\int_{\{u_{1} < u_{2}\}} |\nabla u_{1}(x)|^{p-2} (\nabla u_{1}(x), \nabla v(x))_{\mathbb{R}^{N}} dx$$

$$+ \int_{\{u_{1} \ge u_{2}\}} |\nabla u_{2}(x)|^{p-2} (\nabla u_{2}(x), \nabla v(x))_{\mathbb{R}^{N}} dx$$

$$\ge \int_{\{u_{1} < u_{2}\}} [\lambda u_{1}(x)^{-y} + f(x, u_{1}(x))] v(x) dx + \int_{\{u_{1} \ge u_{2}\}} [\lambda u_{2}(x)^{-y} + f(x, u_{2}(x))] v(x) dx. \tag{3}$$

Here the notation γ_D stands for the characteristic function of a set D, that is,

$$\chi_D(t) =
\begin{cases}
1 & \text{if } t \in D \\
0 & \text{otherwise.}
\end{cases}$$

The gradient of $u := \min\{u_1, u_2\} \in W_0^{1,p}(\Omega)$ is equal to

$$\nabla u(x) = \begin{cases} \nabla u_1(x) & \text{for a.e. } x \in \{u_1 < u_2\} \\ \nabla u_2(x) & \text{for a.e. } x \in \{u_1 \ge u_2\}. \end{cases}$$

Consequently, we can express (3) in the form

$$\int_{\Omega} |\nabla u(x)|^{p-2} (\nabla u(x), \nabla v(x))_{\mathbb{R}^N} dx \ge \int_{\Omega} \left[\lambda u(x)^{-y} + f(x, u(x)) \right] v(x) dx \tag{4}$$

for all $v \in C_0^{\infty}(\Omega)$ with $v(x) \ge 0$ for a.e. $x \in \Omega$. Actually, the density of $C_0^{\infty}(\Omega)_+$ in $W_0^{1,p}(\Omega)_+$ ensures that (4) is valid for all $v \in W_0^{1,p}(\Omega)_+$.

Let \widetilde{u}_{λ} be the unique solution of the purely singular elliptic problem

$$\begin{cases}
-\Delta_p u(x) = \lambda u(x)^{-y} & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial \Omega
\end{cases}$$

Proposition 5 of Papageorgiou-Smyrlis [31] guarantees that $\widetilde{u}_{\lambda} \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$. We claim that

$$\widetilde{u}_{\lambda} \le u \text{ for all } u \in S_{\lambda}.$$
 (5)

For every $u \in S_{\lambda}$, there holds

$$\int_{\Omega} |\nabla u(x)|^{p-2} (\nabla u(x), \nabla v(x))_{\mathbb{R}^N} dx = \int_{\Omega} \left[\lambda u(x)^{-y} + f(x, u(x)) \right] v(x) dx \tag{6}$$

whenever $v \in W_0^{1,p}(\Omega)$. Inserting $v = (\widetilde{u}_{\lambda} - u)^+ \in W_0^{1,p}(\Omega)$ in (6) and using the fact that $f(x, u(x)) \ge 0$, we derive

$$\int_{\Omega} |\nabla u(x)|^{p-2} (\nabla u(x), \nabla (\widetilde{u}_{\lambda} - u)^{+}(x))_{\mathbb{R}^{N}} dx$$

$$= \int_{\Omega} [\lambda u(x)^{-y} + f(x, u(x))] (\widetilde{u}_{\lambda} - u)^{+}(x) dx$$

$$\geq \int_{\Omega} \lambda u(x)^{-y} (\widetilde{u}_{\lambda} - u)^{+}(x) dx$$

$$\geq \int_{\Omega} \lambda \widetilde{u}_{\lambda}(x)^{-y} (\widetilde{u}_{\lambda} - u)^{+}(x) dx$$

$$= \int_{\Omega} |\nabla \widetilde{u}_{\lambda}|^{p-2} (\nabla \widetilde{u}_{\lambda}(x), \nabla (\widetilde{u}_{\lambda} - u)^{+}(x))_{\mathbb{R}^{N}} dx.$$

Then the monotonicity of $-\Delta_p$ leads to (5).

Since $u_1, u_2 \in S_{\lambda}$ and $u := \min\{u_1, u_2\} \in W_0^{1,p}(\Omega)$, we conclude that $u \geq \widetilde{u}_{\lambda}$. Corresponding to the truncation

$$\widetilde{g}(x,s) = \begin{cases}
\lambda \widetilde{u}_{\lambda}(x)^{-y} + f(x, \widetilde{u}_{\lambda}(x)) & \text{if } s < \widetilde{u}_{\lambda}(x) \\
\lambda s^{-y} + f(x,s) & \text{if } \widetilde{u}_{\lambda}(x) \le s \le u(x) \\
\lambda u(x)^{-y} + f(x, u(x)) & \text{if } u(x) < s,
\end{cases}$$
(7)

we consider the intermediate Dirichlet problem

$$\begin{cases}
-\Delta_p w(x) = \widetilde{g}(x, w(x)) & \text{in } \Omega \\
w > 0 & \text{in } \Omega \\
w(x) = 0 & \text{on } \partial\Omega.
\end{cases}$$
(8)

By [32, Proposition 7] there exists $\underline{u} \in W_0^{1,p}(\Omega)$ such that

$$\langle A(\underline{u}), h \rangle = \int_{\Omega} \widetilde{g}(x, \underline{u}(x))h(x) dx$$

for all $h \in W_0^{1,p}(\Omega)$. Inserting $h = (\underline{u} - u)^+$, through (4) and (7), we infer that

$$\langle A(\underline{u}), (\underline{u} - u)^{+} \rangle = \int_{\Omega} \left[\lambda u(x)^{-y} + f(x, u(x)) \right] (\underline{u} - u)^{+}(x) dx$$

$$\leq \langle A(u), (\underline{u} - u)^{+} \rangle.$$

It turns out that $\underline{u} \le u$. Through the same argument, we also imply $\underline{u} \ge \widetilde{u}_{\lambda}$. So by virtue of (7) and (8) we arrive at $\underline{u} \in S_{\lambda}$ and $\underline{u} \leq \min\{u_1, u_2\}$.

We are in a position to prove that problem (1) admits a smallest solution for every $\lambda \in \mathcal{L}$.

Lemma 9. If hypotheses H(f) hold and $\lambda \in \mathcal{L} = (0, \lambda^*]$, then problem (1) has a smallest (positive) solution $u_{\lambda}^{\star} \in S_{\lambda}$, that is,

$$u_{\lambda}^{\star} \leq u \text{ for all } u \in S_{\lambda}.$$

Proof. Fix $\lambda \in (0, \lambda^*]$. Invoking Hu-Papageorgiou [22, Lemma 3.10], we can find a decreasing sequence $\{u_n\} \subset S_{\lambda}$ such that

$$\inf S_{\lambda} = \inf_{n} u_{n}.$$

On the basis of (5) we note that

$$\widetilde{u}_{\lambda} \le u_n \text{ for all } n.$$
 (9)

Next we verify that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Arguing by contradiction, suppose that a relabeled subsequence of $\{u_n\}$ satisfies $\|u_n\| \to \infty$. Set $y_n = \frac{u_n}{\|u_n\|}$. This ensures

$$y_n \to y$$
 weakly in $W_0^{1,p}(\Omega)$ and $y_n \to y$ strongly in $L^p(\Omega)$ with $y \ge 0$. (10)

From (6) and $\{u_n\} \subset S_{\lambda}$ we have

$$\langle A(y_n), v \rangle = \int_{\Omega} |\nabla y_n(x)|^{p-2} (\nabla y_n(x), \nabla v(x))_{\mathbb{R}^N} dx$$

$$= \int_{\Omega} \left[\lambda \frac{u_n(x)^{-y}}{\|u_n\|^{p-1}} + \frac{f(x, u_n(x))}{\|u_n\|^{p-1}} \right] v(x) dx$$
(11)

for all $v \in W_0^{1,p}(\Omega)$. On the other hand, hypotheses H(f)(i) and (ii) entail

$$0 \le f(x, s) \le c_1(1 + |s|^{p-1})$$
 for a.e. $x \in \Omega$ and all $s \ge 0$, (12)

with some $c_1 > 0$. By (10) and (12) we see that the sequence

$$\left\{ \frac{f(\cdot, u_n(\cdot))}{\|u_n\|^{p-1}} \right\}$$
 is bounded in $L^{p'}(\Omega)$.

Due to hypothesis H(f) (ii) and Aizicovici-Papageorgiou-Staicu [1, Proposition 16], we find that

$$\left\{\frac{f(\cdot,u_n(\cdot))}{\|u_n\|^{p-1}}\right\}\to \widehat{\lambda}_m y^{p-1} \text{ weakly in } L^{p'}(\Omega).$$

Then inserting $v = y_n - y$ in (11) and using (9) lead to

$$\lim_{n\to\infty}\langle A(y_n), y_n-y\rangle=0.$$

We can apply Proposition 3 to obtain $y_n \to y$ in $W_0^{1,p}(\Omega)$. Letting $n \to \infty$ in (11) gives

$$\langle A(y), \nu \rangle = \widehat{\lambda}_m \int_{\Omega} y^{p-1} \nu \, dx \text{ for all } \nu \in W_0^{1,p}(\Omega),$$

so y is a nontrivial nonnegative solution of the eigenvalue problem

$$\begin{cases} -\Delta_p y(x) = \widehat{\lambda}_m y(x)^{p-1} & \text{in } \Omega \\ y = 0 & \text{on } \partial\Omega. \end{cases}$$

Consequently, y must be nodal because $m \ge 2$ and $y \ne 0$, which contradicts that $y \ge 0$ in Ω . This contradiction proves that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$.

Along a relabeled subsequence, we may assume that

$$u_n \to u_\lambda^*$$
 weakly in $W_0^{1,p}(\Omega)$ and $u_n \to u_\lambda^*$ in $L^p(\Omega)$, (13)

for some $u_{\lambda}^{\star} \in W_0^{1,p}(\Omega)$. In addition, we may suppose that

$$u_n(x)^{-y} \to u_\lambda^*(x)^{-y}$$
 for a.e. $x \in \Omega$. (14)

From $\widetilde{u}_{\lambda} \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$ and (5), through the Lemma in Lazer-Mckenna [23], we obtain

$$0 \le u_n^{-y} \le \widetilde{u}_{\lambda}^{-y} \in L^{p'}(\Omega). \tag{15}$$

On account of (13)-(15) we have

$$u_n^{-y} \to (u_\lambda^{\star})^{-y}$$
 weakly in $L^{p'}(\Omega)$ (16)

(see also Gasiński-Papageorgiou [16, p. 38]).

Setting $u = u_n \in S_\lambda$ and $v = u_n - u_\lambda^* \in W^{1,p}(\Omega)$ in (6), in the limit as $n \to \infty$ we get

$$\lim_{n\to\infty}\langle Au_n, u_n-u_{\lambda}^{\star}\rangle=0.$$

The property of *A* to be of type (S_+) (according to Proposition 3) implies

$$u_n \to u_\lambda^{\star}$$
 in $W_0^{1,p}(\Omega)$.

The above convergence and Sobolev embedding theorem enable us to deduce

$$\int_{\Omega} |\nabla u_{\lambda}^{\star}(x)|^{p-2} \left(\nabla u_{\lambda}^{\star}(x), \nabla v(x) \right)_{\mathbb{R}^{N}} dx = \int_{\Omega} \left[\lambda u_{\lambda}^{\star}(x)^{-y} + f(x, u_{\lambda}^{\star}(x)) \right] v(x) dx$$

for all $v \in W_0^{1,p}(\Omega)$. Consequently, we have

$$u_{\lambda}^{\star} \in S_{\lambda} \subset \operatorname{int}(C_0^1(\overline{\Omega})_+)$$
 and $u_{\lambda}^{\star} = \inf S_{\lambda}$,

which completes the proof.

In the next lemma we examine monotonicity and continuity properties of the map $\lambda \mapsto u_{\lambda}^{\star}$ from $\mathcal{L} = (0, \lambda^{\star}]$ to $C_0^1(\overline{\Omega})$.

Lemma 10. Suppose that hypotheses H(f) hold. Then the map $\Gamma: \mathcal{L} = (0, \lambda^*] \to C_0^1(\overline{\Omega})$ given by $\Gamma(\lambda) = u_{\lambda}^*$ fulfills:

(i) Γ is strictly increasing, in the sense that

$$0 < \mu < \lambda \le \lambda^*$$
 implies $u_{\lambda}^* - u_{\mu}^* \in \operatorname{int}(C_0^1(\overline{\Omega})_+);$

(ii) Γ is left continuous.

Proof. (i) It follows from [32, Proposition 5] that there exists a solution $u_{\mu} \in S_{\mu} \subset \operatorname{int}(C_0^1(\overline{\Omega})_+)$ such that

$$u_{\lambda}^{\star} - u_{\mu} \in \operatorname{int}(C_0^1(\overline{\Omega})_+).$$

The desired conclusion is the direct consequence of the inequality $u_{\mu}^{\star} \leq u_{\mu}$.

(ii) Let $\{\lambda_n\} \subset (0, \lambda^*]$ and $\lambda \in (0, \lambda^*]$ satisfy $\lambda_n \uparrow \lambda$. Denote for simplicity $u_n = u_{\lambda_n}^* = \Gamma(\lambda_n) \in S_{\lambda_n} \subset \operatorname{int}(C_0^1(\overline{\Omega})_+)$. It holds

$$\langle A(u_n), v \rangle = \int_{\Omega} \left[\lambda_n u_n(x)^{-y} + f(x, u_n(x)) \right] v(x) \, dx \tag{17}$$

for all $v \in W_0^{1,p}(\Omega)$. By assertion (i) we know that

$$0 \le u_1 \le u_n \le u_{\lambda^*}^*. \tag{18}$$

Choosing $v = u_n$ in (17) and proceeding as in the proof of Lemma 9, we verify that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Given r > N, it is true that $(u_{\lambda_1}^{\star})^r \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$, so there is a constant $c_2 > 0$ such that

$$\widetilde{u}_1 \leq c_2 (u_{\lambda_1}^\star)^r = c_2 u_1^r$$

or

$$\widetilde{u}_1^{\frac{-y}{r}} \geq c_2^{\frac{-y}{r}} u_1^{-y}.$$

We can make use of the Lemma in Lazer-Mckenna [23] for having

$$0 \le u_n^{-y} \le u_1^{-y} \in L^r(\Omega)$$
 for all n .

Moreover, hypothesis H(f)(i) and (18) render that

the sequence $\{f(\cdot, u_n(\cdot))\}\$ is bounded in $L^r(\Omega)$.

Therefore, utilizing Guedda-Véron [20, Proposition 1.3] we obtain the uniform bound

$$||u_n||_{L^{\infty}(\Omega)} \le c_3 \quad \text{for all } n, \tag{19}$$

with some $c_3 > 0$. Besides, the linear elliptic problem

$$\begin{cases} -\Delta v(x) = g_{\lambda_n}(x) & \text{in } \Omega \\ v = 0 & \text{on } \partial\Omega, \end{cases}$$

where $g_{\lambda_n}(\cdot) = \lambda_n u_n(\cdot)^{-y} + f(\cdot, u_n(\cdot)) \in L^r(\Omega)$, has a unique solution $v_{\lambda_n} \in W_0^{2,r}(\Omega)$ (see, e.g., [19, Theorem 9.15]). Owning to r > N, the Sobolev embedding theorem provides

$$v_{\lambda_n} \in C_0^{1,\alpha}(\overline{\Omega}),$$

with $\alpha = 1 - \frac{N}{r}$. For $w_n := \nabla v_{\lambda_n}$, we have $w_n \in C^{0,\alpha}(\overline{\Omega}, \mathbb{R}^N)$ and

$$\begin{cases} -\operatorname{div}\left(|\nabla u_n(x)|^{p-2}\nabla u_n(x) - w_n(x)\right) = 0 & \text{in } \Omega\\ u_n = 0 & \text{on } \partial\Omega. \end{cases}$$

This allows us to apply the nonlinear regularity up to the boundary in Liebermann [24, 25] finding that $u_n \in C_0^{1,\beta}(\overline{\Omega})$ with some $\beta \in (0,1)$ for all n. Here the uniform estimate in (19) is essential. The compactness of the embedding of $C_0^{1,\beta}(\overline{\Omega})$ in $C_0^1(\overline{\Omega})$ and the monotonicity of the sequence $\{u_n\}$ guarantee

$$u_n \to \overline{u}_{\lambda}$$
 in $C_0^1(\overline{\Omega})$

for some $\overline{u}_{\lambda} \in C_0^1(\overline{\Omega})$.

We claim that $\overline{u}_{\lambda} = u_{\lambda}^{\star}$. Arguing by contradiction, suppose that there exists $x^{\star} \in \Omega$ satisfying

$$\overline{u}_{\lambda}(x^{\star}) < u_{\lambda}^{\star}(x^{\star}).$$

The known monotonicity property of $\{u_n\}$ entails

$$u_{\lambda}^{\star}(x^{\star}) < u_{n}(x^{\star}) = u_{\lambda}^{\star}(x^{\star})$$
 for all n ,

which contradicts assertion (i). It results that $\overline{u}_{\lambda} = u_{\lambda}^{\star} = \Gamma(\lambda)$, thereby

$$\Gamma(\lambda_n) = u_n \to \overline{u}_{\lambda} = \Gamma(\lambda)$$
 as $n \to \infty$,

completing the proof.

Next we turn to the semicontinuity properties of the set-valued mapping Λ .

Lemma 11. Assume that hypotheses H(f) hold. Then the set-valued mapping $\Lambda \colon \mathcal{L} \to 2^{C_0^1(\overline{\Omega})}$ is sequentially upper semicontinuous.

П

Proof. According to Proposition 6 we are going to show that for any closed set $D \subset C_0^1(\overline{\Omega})$, one has that

$$\Lambda^{-}(D) := \{\lambda \in \mathbb{R} : \Lambda(\lambda) \cap D \neq \emptyset\}$$

is closed in \mathbb{R} . Let $\{\lambda_n\} \subset \Lambda^-(D)$ verify $\lambda_n \to \lambda$ as $n \to \infty$. So,

$$\Lambda(\lambda_n) \cap D \neq \emptyset$$
,

hence there exists a sequence $\{u_n\} \subset \operatorname{int}(C_0^1(\overline{\Omega})_+)$ satisfying

$$u_n \in \Lambda(\lambda_n) \cap D$$
 for all $n \in \mathbb{N}$,

in particular

$$\int\limits_{\Omega} |\nabla u_n(x)|^{p-2} \left(\nabla u_n(x), \nabla v(x)\right)_{\mathbb{R}^N} dx = \int\limits_{\Omega} \left[\lambda_n u_n(x)^{-y} + f(x, u_n(x))\right] v(x) dx \tag{20}$$

for all $v \in W_0^{1,p}(\Omega)$. As in the proof of Lemma 9, we can show that the sequence $\{u_n\}$ is bounded in $W_0^{1,p}(\Omega)$. Therefore we may assume that

$$u_n \to u$$
 weakly in $W_0^{1,p}(\Omega)$ and $u_n \to u$ in $L^p(\Omega)$. (21)

for some $u \in W_0^{1,p}(\Omega)$. Furthermore, the sequences $\{f(\cdot, u_n(\cdot))\}$ and $\{u_n^{-y}\}$ are bounded in $L^{p'}(\Omega)$ as already demonstrated in the proofs of Lemmas 9 and 10. In (20), we choose $v = u_n - u \in W_0^{1,p}(\Omega)$ and then pass to the limit as $n \to \infty$. By means of (21) we are led to

$$\lim_{n\to\infty}\langle A(u_n), u_n-u\rangle=0.$$

Since *A* is of type (S_+) , we can conclude

$$u_n \to u \text{ in } W_0^{1,p}(\Omega).$$
 (22)

On account of (20), the strong convergence in (22) and Sobolev embedding theorem imply

$$\int_{\Omega} |\nabla u(x)|^{p-2} (\nabla u(x), \nabla v(x))_{\mathbb{R}^N} dx = \int_{\Omega} [\lambda u(x)^{-y} + f(x, u(s))] v(x) dx$$

for all $v \in W_0^{1,p}(\Omega)$. This reads as $u \in S_{\lambda} = \Lambda(\lambda)$.

It remains to check that $u \in D$. Fix $\lambda \in \mathcal{L}$ such that

$$\lambda < \lambda_n \le \lambda^*$$
 for all n .

By Lemma 10 (i) we know that

$$u_{\lambda}^{\star} < u_{\lambda_n}^{\star} \le u_n$$
 for all n .

The same argument as in the proof of Lemma 10 confirms that, for r > N fixed, the function $x \mapsto \lambda_n u_n(x)^{-y} + \lambda_n u_n(x)^{-y}$ $f(x, u_n(x))$ is bounded in $L^r(\Omega)$. Let $g_{\lambda_n}(x) = \lambda_n u_n(x)^{-y} + f(x, u_n(x)) \in L^r(\Omega)$ and consider the linear Dirichlet problem

$$\begin{cases}
-\Delta v(x) = g_{\lambda_n}(x) & \text{in } \Omega \\
v = 0 & \text{on } \partial\Omega.
\end{cases}$$
(23)

The standard existence and regularity theory (see, e.g., Gilbarg-Trudinger [19, Theorem 9.15]) ensure that problem (23) has a unique solution

$$v_{\lambda_n} \in W^{2,r}(\Omega) \subset C_0^{1,\alpha}(\overline{\Omega}) \text{ with } \|v_{\lambda_n}\|_{C_0^{1,\alpha}(\overline{\Omega})} \leq c_4,$$

with a constant $c_4 > 0$ and $\alpha = 1 - \frac{N}{r}$. Denote $w_n(x) = \nabla v_{\lambda_n}(x)$ for all $x \in \Omega$. It holds $w_n \in C^{0,\alpha}(\overline{\Omega})$ thanks to $v_{\lambda_n} \in C^{1,\alpha}(\overline{\Omega})$. Notice that

$$\begin{cases}
-\operatorname{div}\left(|\nabla u_n(x)|^{p-2}\nabla u_n(x)-w_n(x)\right)=0 & \text{in } \Omega \\
u_n=0 & \text{on } \partial\Omega.
\end{cases}$$

The nonlinear regularity up to the boundary in Liebermann [24, 25] reveals that $u_n \in C_0^{1,\beta}(\overline{\Omega})$ for all $n \in \mathbb{N}$ with some $\beta \in (0, 1)$. The compactness of the embedding of $C_0^{1,\beta}(\overline{\Omega})$ in $C_0^1(\overline{\Omega})$ and (22) yield the strong convergence

$$u_n \to u \text{ in } C_0^1(\overline{\Omega}).$$

Recalling that *D* is closed in $C_0^1(\overline{\Omega})$ it results that $u \in \Lambda(\lambda) \cap D$, i.e., $\lambda \in \Lambda^-(D)$.

Lemma 12. Suppose that hypotheses H(f) hold. Then the set-valued mapping $\Lambda \colon \mathcal{L} \to 2^{C_0^1(\overline{\Omega})}$ is sequentially lower semicontinuous.

Proof. In order to refer to Proposition 7, let $\{\lambda_n\} \subset \mathcal{L}$ satisfy $\lambda_n \to \lambda \neq 0$ as $n \to \infty$ and let $w \in S_{\lambda} \subset \operatorname{int}(C_0^1(\overline{\Omega})_+)$. For each $n \in \mathbb{N}$, we formulate the Dirichlet problem

$$\begin{cases}
-\Delta_p u(x) = \lambda_n w(x)^{-y} + f(x, w(x)) & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$
(24)

In view of $w \ge \widetilde{u}_{\lambda} \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$ (see (5)) and

$$\begin{cases} \lambda_n w(x)^{-y} + f(x, w(x)) \ge 0 & \text{for all } x \in \Omega \\ \lambda_n w(x)^{-y} + f(x, w(x)) \not\equiv 0, \end{cases}$$

it is obvious that problem (24) has a unique solution $u_n^0 \in \operatorname{int}(C_0^1(\overline{\Omega})_+)$. Relying on the growth condition for f (see hypotheses H(f)(i) and (ii)), through the same argument as in the proof of Lemma 9 we show that the sequence $\{u_n^0\}$ is bounded in $W_0^{1,p}(\Omega)$. Then Proposition 1.3 of Guedda-Véron [20] implies the uniform boundedness

$$u_n^0 \in L^{\infty}(\Omega)$$
 and $||u_n^0||_{L^{\infty}(\Omega)} \le c_5$ for all $n \in \mathbb{N}$,

with a constant $c_5 > 0$. As in the proof of Lemma 11, we set $g_{\lambda_n}(x) = \lambda_n w(x)^{-y} + f(x, w(x))$ and consider the Dirichlet problem (23) to obtain that $\{u_n^0\}$ is contained in $C_0^{1,\beta}(\overline{\Omega})$ for some $\beta \in (0,1)$. Due to the compactness of the embedding of $C_0^{1,\beta}(\overline{\Omega})$ in $C_0^1(\overline{\Omega})$, we may assume

$$u_n^0 \to u$$
 in $C_0^1(\overline{\Omega})$ as $n \to \infty$,

with some $u \in C_0^1(\overline{\Omega})$. Then (24) yields

$$\begin{cases}
-\Delta_p u(x) = \lambda w(x)^{-y} + f(x, w(x)) & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$

Thanks to $w \in \Lambda(\lambda)$, a simple comparison justifies u = w. Since every convergent subsequence of $\{u_n\}$ converges to the same limit w, it is true that

$$\lim_{n\to\infty}u_n^0=w.$$

Next, for each $n \in \mathbb{N}$, we consider the Dirichlet problem

$$\begin{cases}
-\Delta_p u(x) = \lambda_n u_n^0(x)^{-y} + f(x, u_n^0(x)) & \text{in } \Omega \\
u > 0 & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$

Carrying on the same reasoning, we can show that this problem has a unique solution u_n^1 belonging to $\operatorname{int}(C_0^1(\overline{\Omega})_+)$ and that

$$\lim_{n\to\infty}u_n^1=w.$$

Continuing the process, we generate a sequence $\{u_n^k\}_{n,k\geq 1}$ such that

$$\begin{cases}
-\Delta_{p}u_{n}^{k}(x) = \lambda_{n}u_{n}^{k-1}(x)^{-y} + f(x, u_{n}^{k-1}(x)) & \text{in } \Omega \\
u_{n}^{k} > 0 & \text{in } \Omega \\
u_{n}^{k} = 0 & \text{on } \partial\Omega
\end{cases}$$

and

$$\lim_{n\to\infty}u_n^k=w \text{ for all } k\in\mathbb{N}.$$
 (25)

Fix $n \ge 1$. As before, based on the nonlinear regularity [24, 25], we notice that the sequence $\{u_n^k\}_{k\ge 1}$ is relatively compact in $C_0^1(\overline{\Omega})$, so we may suppose

$$u_n^k \to u_n$$
 in $C_0^1(\overline{\Omega})$ as $k \to \infty$,

for some $u_n \in C_0^1(\overline{\Omega})$. Then it appears that

$$\begin{cases}
-\Delta_p u_n(x) = \lambda_n u_n(x)^{-y} + f(x, u_n(x)) & \text{in } \Omega \\
u_n > 0 & \text{in } \Omega \\
u_n = 0 & \text{on } \partial\Omega
\end{cases}$$

which means that $u_n \in \Lambda(\lambda_n)$.

The convergence in (25) and the double limit lemma (see, e.g., [13, Proposition A.2.35]) result in

$$u_n \to w$$
 in $C_0^1(\overline{\Omega})$ as $n \to \infty$.

By Proposition 7 we conclude that Λ is lower semicontinuous.

Proof of Theorem 2. (i) It suffices to apply Lemmas 11 and 12.

(ii) The stated conclusion is a direct consequence of Lemmas 9 and 10.

Acknowledgement: Project supported by the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 823731 – CONMECH, the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262, and National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611. It is also supported by the International Project co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No. 3792/GGPJ/H2020/2017/0. D. Motreanu received Visiting Professor fellowship from CNPQ/Brazil PV-400633/2017-5.

References

- S. Aizicovici, N.S. Papageorgiou, V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (2008), no. 915, vi+70 pp.
- [2] D. Averna, D. Motreanu, E. Tornatore, Existence and asymptotic properties for quasilinear elliptic equations with gradient dependence, Appl. Math. Lett. 61 (2016), 102-107.
- [3] A. Callegari, A. Nachman, A nolinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math. 38 (1980), 275-281.
- S. Carl, Extremal solutions of p-Laplacian problems in $\mathcal{D}^{1,p}(\mathbb{R}^N)$ via Wolff potential estimates, J. Differential Equations 263 (2017), 3370-3395.
- S. Carl, D.G. Costa, H. Tehrani, $\mathcal{D}^{1,2}(\mathbb{R}^N)$ versus $\mathcal{C}(\mathbb{R}^N)$ local minimizer and a Hopf-type maximum principle, J. Differential Equations 261 (2016), 2006-2025.
- [6] F. Cîrstea, M. Ghergu, V.D. Rădulescu, Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type, J. Math. Pures Appl. 84 (2005), 493-508.
- [7] M.G. Crandall, P.H. Rabinowitz, L. Tartar, On a Dirichlet problem with a singular nonlinearity, Comm. Partial Differential Equations 2 (1977), 193-222.
- [8] Z. Denkowski, S. Migórski, N.S. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic/Plenum Publishers, Boston, Dordrecht, London, New York, 2003.
- [9] J. Díaz, M. Morel, L. Oswald, An elliptic equation with singular nonlinearity, Comm. Partial Differential Equations 12 (1987), 1333-1344.
- [10] L. Dupaigne, M. Ghergu, V.D. Rădulescu, Lane-Emden-Fowler equations with convection and singular potential, J. Math. Pures Appl. 87 (2007), 563-581.
- [11] L.F.O. Faria, O.H. Miyagaki, D. Motreanu, Comparison and positive solutions for problems with the (p,q)-Laplacian and a convection term, Proc. Edinb. Math. Soc. 57 (2014), 687-698.
- [12] M. Filippakis, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the p-Laplacian, J. Differential Equations 245 (2008), 1883-1922.
- [13] L. Gasiński, N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, FL, 2006.
- [14] L. Gasiński, N.S. Papageorgiou, Existence and multiplicity of solutions for Neumann p-Laplacian-type equations, Adv. Nonlinear Stud. 8 (2008), 843-870.
- [15] L. Gasiński, N.S. Papageorgiou, Nonlinear elliptic equations with singular terms and combined nonlinearities, Ann. Henri Poincaré 13 (2012), 481-512.
- [16] L. Gasiński, N.S. Papageorgiou, Exercises in Analysis. Part 2: Nonlinear Analysis, Springer, Heidelberg, 2016.
- [17] L. Gasiński, N.S. Papageorgiou, Asymmetric (p, 2)-equations with double resonance, Calc. Var. Partial Differential Equations 56:3 (2017), Art. 88, 23 pp.
- [18] M. Ghergu, V.D. Rădulescu, Sublinear singular elliptic problems with two parameters, J. Differential Equations 195 (2003), 520-536.
- [19] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998.
- [20] M. Guedda, L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. TMA 13 (1989),
- [21] N. Hirano, C. Saccon, N. Shioji, Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem, J. Differential Equations 245 (2008), 1997–2037.
- [22] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I: Theory, Kluwer Academic Publishers, Dordrecht, 1997.
- [23] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, *Proc. Amer. Math. Soc.* 111 (1991), 721– 730.
- [24] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. TMA 12 (1988), 1203-1219.
- [25] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991), 311-361.
- [26] Z.H. Liu, D. Motreanu, S.D. Zeng, Positive solutions for nonlinear singular elliptic equations of p-Laplacian type with dependence on the gradient, Calc. Var. Partial Di erential Equations, 98 (2019), 22 pp, doi: 10.1007/s00526-018-1472-1
- [27] M. Marcus, V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45 (1972), 294-320.
- [28] S. Migórski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013.
- [29] D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear Neumann eigenvalue problems, Ann. Sc. Norm. Super. Pisa Cl. Sci. 10 (2011), 729-755.
- [30] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for nonlinear parametric singular Dirichlet problems, Bulletin of Mathematical Sciences, (2018), doi: 10.1007/s13373-018-0127-z.

- [31] N.S. Papageorgiou, G. Smyrlis, A bifurcation-type theorem for singular nonlinear elliptic equations, *Methods Appl. Anal.* **22** (2015), 147–170.
- [32] N.S. Papageorgiou, C. Vetro, F. Vetro, Parametric nonlinear singular Dirichlet problems, *Nonlinear Anal. RWA* **45** (2019), 239–254.
- [33] N.S. Papageorgiou, P. Winkert, Singular *p*-Laplacian equations with superlinear perturbation, *J. Differential Equations*, **266** (2019), 1462–1487.
- [34] P. Pucci, J. Serrin, *The Maximum Principle*, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007.
- [35] E. Zeidler, Nonlinear Functional Analysis and Applications II A/B, Springer, New York, 1990.