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Abstract: In this paper we study from a qualitative point of view the nonlinear singular Dirichlet problem
depending on a parameter A > 0 that was considered in [32]. Denoting by S, the set of positive solutions of
the problem corresponding to the parameter A, we establish the following essential properties of S;:

() there exists a smallest element u} in S;, and the mapping A — u} is (strictly) increasing and left
continuous;
(ii)  the set-valued mapping A — S, is sequentially continuous.
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1 Introduction

Elliptic equations with singular terms represent a class of hot-point problems because they are mathemat-
ically significant and appear in applications to chemical catalysts processes, non-Newtonian fluids, and in
models for the temperature of electrical conductors (see [3, 9]). An extensive literature is devoted to such
problems, especially focusing on their theoretical analysis. For instance, Ghergu-Radulescu [18] established
several existence and nonexistence results for boundary value problems with singular terms and parameters;
Gasinski-Papageorgiou [15] studied a nonlinear Dirichlet problem with a singular term, a (p — 1)-sublinear
term, and a Carathéodory perturbation; Hirano-Saccon-Shioji [21] proved Brezis-Nirenberg type theorems for
a singular elliptic problem. Related topics and results can be found in Crandall-Rabinowitz-Tartar [7], Cirstea-
Ghergu-Radulescu [6], Dupaigne-Ghergu-Radulescu [10], Gasifiski-Papageorgiou [17], Averna-Motreanu-
Tornatore [2], Papageorgiou-Winkert [33], Carl [4], Faria-Miyagaki-Motreanu [11], Carl-Costa-Tehrani [5], Liu-
Motreanu-Zeng [26] Papageorgiou-Radulescu-Repovs [30], and the references therein.

Let @ c R" be a bounded domain with a C2-boundary 0Q and let y € (0, 1) and 1 < p < +oo. Recently,
Papageorgiou-Vetro-Vetro [32] have considered the following parametric nonlinear singular Dirichlet problem

=Opu(x) =) + f(x,u(x)) inQ
u(x) >0 inQ o))

u=0 on 00,
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where the operator A, stands for the p-Laplace differential operator
Apu = div (|VulP?vu) forall ue WyP(Q).
The nonlinear function f is assumed to satisfy the following conditions:

H(f): f: QxR — Ris a Carathéodory function such that for a.e. x € Q, f(x,0) = 0, f(x,s) = O forall s > 0,
and

(i)  foreveryp > 0, there exists a, € L*°(Q) such that
If(x,s)] < ap(x) fora.e. x € Q andforall |s|<p;
(ii)  there exists an integer m > 2 such that

lim fix, )

s—too §P-1

= Xm uniformly for a.e. x € Q,

where A, is the m-th eigenvalue of (-4p, Wé ’P(Q)), and denoting

F(x,t)= | f(x, t)dt,
/

then
PF(x,s) - f(x,s)s — +o0 as s — +oo, uniformly fora.e. x € Q;
(iii) for some r > p, there exists ¢ = 0 such that
f&x,s) f&x,s)
sl s

0 < liminf

i <limsup —>— < co uniformly fora.e. x € Q;
s—0*

s—0* 1
(iv)  for every p > 0, there exists Ep > 0 such that for a.e. x € Q the function
s f(x,s) + Epsp"l

is nondecreasing on [0, p].

The following bifurcation type result is proved in [32, Theorem 2].

Theorem 1. If hypotheses H(f) hold, then there exists a critical parameter value A" > 0 such that

(@) forall A € (0, ") problem (1) has at least two positive solutions ug, u; € int(C3(Q):);
(b)  for A = A" problem (1) has at least one positive solution u” € int(C3(Q));
(c)  forallA > A" problem (1) has no positive solutions.

In what follows, we denote

£ :={A>0 : problem (1) admits a (positive) solution} = (0, A,

Sp={ue Wé’p (Q) : uis a(positive) solution of problem (1)}

for A € £.In this respect, Theorem 1 asserts that the above hypotheses, in conjunction with the nonlinear reg-
ularity theory (see Liebermann [24, 25]) and the nonlinear strong maximum principle (see Pucci-Serrin [34]),
ensure that there holds

Sy C int(C(Q)4).
Also, we introduce the set-valued mapping A: (0, A"] — 26@ by
AQQ) =S, forallA e (0,A"].

The following open questions need to be answered:
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Is there a smallest positive solution to problem (1) for each A € (0, "] ?

If for each A € (0, A"] problem (1) has a smallest positive solution u}, then the function T': (0, A"] —
Co(Q) with I'(A) = uj, is it monotone ?

Iffor each A € (0, "] problem (1) has a smallest positive solution u;, then is the function I continuous
?

Is the solution mapping A upper semicontinuous ?

Is the solution mapping A lower semicontinuous ?

In this paper we answer in the affirmative the above open questions.

Theorem 2. Assume that hypotheses H(f) hold. Then there hold:

(i)
(ii)

the set-valued mapping A: L — 26 jg sequentially continuous;
for each A € L, problem (1) has a smallest positive solution u € int(C}(Q)+), and the map T from £ to
C(Q) given by I'(A) = u} is

(a) (strictly) increasing, that is, if O < y < A < A", then
uy - uy € int(CH(Q));

(b) left continuous.

The rest of the paper is organized as follows. In Section 2 we set forth the preliminary material needed in the
sequel. In Section 3 we prove our main results formulated as Theorem 2.

2 Preliminaries

In this section we gather the preliminary material that will be used to prove the main result in the paper. For
more details we refer to [8, 13, 16, 19, 22, 28, 29, 35].

Let 1 < p < oo and p’ be its Holder conjugate defined by % +

> = 1. In what follows, the Lebesgue space

S

LP(Q) is endowed with the standard norm

llullp = (/|u(x)|p dx)p forall u e LP(Q).
Q

The Sobolev space Wé 'P(Q) is equipped with the usual norm

1
llul| = (/ [Vu(x)[P dx) " forall ue Wé’p(Q)-
o)

In addition, we shall use the Banach space

Co(Q) ={ueC'(Q) :u=0 on 00Q}.

Its cone of nonnegative functions

C6(Q): ={ueCy(@) : u=20 inQ}

has a nonempty interior given by

int(C3(Q)4) = {u €Cy(Q) : u>0inQ with g—z

< 0},
00
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where % is the normal derivative of u and n(-) is the outward unit normal to the boundary 0Q.
Hereafter by (-, -) we denote the duality brackets for (W>P(Q)", W1 (Q)). Also, we define the nonlinear
operator A: WHP(Q) — WHP(Q)" by

(A(u), v) = / |Vu(x) P2 (Vu(x), Vv(x)gn dx forall u,v e whP(Q). 2
oy

The following statement is a special case of more general results (see Gasifiski-Papageorgiou [14], Motreanu-
Motreanu-Papageorgiou [29]).

Proposition 3. The map A: WhP(Q) — WYP(Q)" introduced in (2) is continuous, bounded (that is, it maps
bounded sets to bounded sets), monotone (hence maximal monotone) and of type (S+), i.e., ifun — uin WHP(Q)
and

lim sup(A(un), un - u) <0,

n—oo

then un — u in W-P(Q).
For the sake of clarity we recall the following notion regarding order.

Definition 4. Let (P, <) be a partially ordered set. A subset E C P is called downward directed if for each pair
u, v € E there exists w € E suchthatw < uand w < v.

Forany u,v ¢ Wé’p (Q) with u(x) < v(x) for a.e. x € Q, we set the ordered interval
[u,v]:={we Wé’p(Q) s u(x) s w(x) < v(x) forae. x € Q}.
For s € R, we denote s* = max{+s, 0}. It is clear thatif u € Wé’p (Q) then it holds
ut e Wé’p(_()), u=u"-u, |ul=u"+u.
We recall a few things regarding upper and lower semicontinuous set-valued mappings.

Definition 5. Let X and Y be topological spaces. A set-valued mapping F: X — 2V is called

(i)  upper semicontinuous (u.s.c., for short) at x € X if for every open set O C Y with F(x) C O there exists
a neighborhood N(x) of x such that

FING) = | Fo)co;
yEN(X)

if this holds for every x € X, F is called upper semicontinuous;
(i)  lower semicontinuous (l.s.c., for short) at x ¢ X if for every open set O C Y with F(x) N O # () there
exists a neighborhood N(x) of x such that

Fy)n O #0 forally € N(x);

if this holds for every x € X, F is called lower semicontinuous;
(iii) continuous at x € X if F is both upper semicontinuous and lower semicontinuous at x € X; if this holds
forevery x € X, F is called continuous.

The propositions below provide criteria of upper and lower semicontinuity.

Proposition 6. The following properties are equivalent:

i) F:X-—2Visus.c;
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(ii)  forevery closed subset C C Y, the set
F(O:={xeX|FX)NC+#0}

is closed in X.

Proposition 7. The following properties are equivalent:

(@ F:X—2Yisls.c;
(b) ifu € X, {up}re; C Xis anet such that uy — u, and u” € F(u), then for each A € J there is u; € F(uy)
withuy — u" inY.

3 Proof of the main result

In this section we prove Theorem 2. We start with the fact that, for each A € £, problem (1) has a smallest
solution. To this end, we will use the similar technique employed in [12, Lemma 4.1] to show that the solution
set S, is downward directed (see Definition 4).

Lemma 8. ForeachA € £ = (0, A", the solution set S, of problem (1) is downward directed, i.e., if u,, u, € Sy,
then there exists u € S, such that

us<u; and u<u,.

Proof. Fix A € (0,A"] and uq, u, € S,. Corresponding to any £ > 0 we introduce the truncation :: R — R as
follows

0 ift<0
ne(t)=< L ifo<t<e

1 otherwise,

which is Lipschitz continuous. It results from Marcus-Mizel [27] that

Ne(uz —up) € Wé’p(Q)
and

V(ne(ua - u1)) = ne(uz ~u)V(uz - ur).

Then for any function v € C5’(Q) with v(x) = 0 for a.e. x € Q, we have

ne(uz - ur)v € WP (Q)
and

V (ne(uz - u1)v) = vV(ne(uz - u1)) + ne(uy - ug)vv.

Since uq, u; € S,, there hold

/ IVu; ()P (Vu;(x), V(p(x))RN dx = A/ui(x)"yq)(x) dx + /f(x, u;(x))p(x)dx forall ¢ € Wé’p(.()), i=1,2.
0 0 0
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Inserting ¢ = ne(u; —up)vfori = 1and ¢ = (1-n.(u; —uq))vfori = 2, and summing the resulting inequalities
yield

/ VU (P2 (Vur (), V (ne(ua - u)v) 0))gn dx
0
+/ VU 1P (Vo (%), V(1 - neua - up))v) () gy dx
0
- / Ay (07 + £t uy (0)] (16 (z - up)v) () dx

Q0

+ / M0 + FGx, w00)] (1 - etz - un)v) () dx.
Q

We note that
/ [Vur 002 (Vur (0, V (ne(uz — un)v) ()gw dx
Q
_1 / |Vuy( )p*Z _ d
= 1P (Vur(x), V(uz = u1)(x))pnv(x) dx
{0<uy-ui<e}
+ / V2100 P2(Vat1 (), VY00 e (206) — () dx
Q
and

/ Vs ()P4 (Vua(x), V(1 - ne(uz —u1))v)(x))gn dx
)

= —% / [V, (0P (Vuz(x), V(ug - up)(0)gav(x) dx

{0<uz-u;<e}

+ / |V (0P (Vuz (x), VV(X)) gy (1 - ne(uza(x) - u1 (x))) dx.
Q

Altogether, we obtain

/ VU GO 2 (Va1 (60, V0w e (200 - ur () dx
o)

+ / V00 P2Vt (), Vv O (1 = ne(ua(6) - s (0)) dx
(0}

2 / [Aur )™ + fOx, u1 (0))] (ne(uz - ur)v)(x) dx

Q

+/ [Au () + fOx, u2(0))] (1 - ne(uz - ur))v) (x) dx.

Q

Now we pass to the limit as € — 0*. Using Lebesgue’s Dominated Convergence Theorem and the fact that

Ne((U2 —u1)(0) = X{uy<u}0) forae.x e Q ase - 0",
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we find

V1 ()P (Vup(x), Vv(X))gn dx

{ui<uy }
v / VU2 (0P 2(Vu(6), VV(0)gn dx
{uizu, }
> / [Aur )7 + fx, ug (X)) v(x) dx + / [Au2 ()™ + fx, uz (x))] v(x) dx.
{wi<uz } {urzup }

Here the notation yp stands for the characteristic function of a set D, that is,

1 ifteD
Xp(t) =

0 otherwise.
The gradient of u := min{u;, u,} € Wé’p (Q) is equal to

{ Vui(x) forae.x e {u; <uy}
Vu(x) =

Vuy(x) forae.x € {u; 2 u}.

Consequently, we can express (3) in the form

/ IVu() P4 (Vu(x), Vv(X))py dx 2 / [Au(x)” + f(x, u(x))] v(x) dx
0

o}

€)

(4)

forall v € C3°(Q) with v(x) = O for a.e. x € Q. Actually, the density of C5’(Q)+ in Wé’p (Q)+ ensures that (4) is

valid forall v € Wé’p (Q)+.
Let u, be the unique solution of the purely singular elliptic problem

-Apu(x) =Au(x)? inQ
u>0 in Q

u=0 on 0Q.
Proposition 5 of Papageorgiou-Smyrlis [31] guarantees that u, € int(C5(Q) ). We claim that
uy<u forall ucS;,.

For every u € S, there holds

/ VUG 2 (Vu(), Vv())an dx = / (A + £c, uG0)] v dx
Q

Q
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whenever v € Wé’p (Q). Inserting v = (u - u)* € Wé’p (Q) in (6) and using the fact that f(x, u(x)) = 0, we
derive

/ VUG P2V, V(i - ) (0))gy dx
Q

- / AuG)™ + £, u(0)] @y - 1) (x) dx

Q

. / A0 (i - 1) () dx
0]
> /Aﬁ,\(x)"y(ﬁ,\—uﬁ(x) dx
5

= / (VI P72 (VI (), V(g - w) (%)) oy dx.
Q

Then the monotonicity of -Ap leads to (5).

Since ui,u; € Spand u := min{uy, us} € Wcl,’p(_()), we conclude that u > u,. Corresponding to the
truncation

A ()7 + e, up(x)  if s < uy(x)
glx,s)=< As7V +f(x,s) ifu(x) < s < ux) @)
Au(x)™” + f(x, u(x)) if u(x) <s,
we consider the intermediate Dirichlet problem
-Apw(x) =g(x,w(x)) inQ
w>0 inQ 8

w(x)=0 on 0.
By [32, Proposition 7] there exists u € Wé’p (Q) such that
(AW, 1) = [ 80 w6 dx
Q
forallh e Wé’p (Q). Inserting h = (u - u)*, through (4) and (7), we infer that

(AW, (- w)") = / AuG)™ + £0c, uG0)] 1 - w)* (x) dx

Q

< (AQ), (u-u)").

It turns out that u < u. Through the same argument, we also imply u > u,. So by virtue of (7) and (8) we arrive
atu € Sy and u < min{uy, u,}. O

We are in a position to prove that problem (1) admits a smallest solution for every A ¢ L.

Lemma 9. If hypotheses H(f) hold and A € £ = (0, A"], then problem (1) has a smallest (positive) solution
Uy € Sy, that is,

uy<u forallu e S,.
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Proof. Fix A € (0, A"]. Invoking Hu-Papageorgiou [22, Lemma 3.10], we can find a decreasing sequence {un} C
S, such that
infS, = irnlfun.
On the basis of (5) we note that
U, < un forall n. 9)

Next we verify that the sequence {un} is bounded in Wé *P(Q). Arguing by contradiction, suppose that a rela-

beled subsequence of {un} satisfies ||un|| — oo. Set yn = HZ—:” This ensures

yn —y weaklyin W3P(Q) and y, —y stronglyin LP(Q) with y=0. (10)

From (6) and {un} C S; we have

(Ayn), V) = / VYRG0 2(Vyn 00, VV())gr dx

Q
- un(x)?  f(x, un(x))
_/ Plunw-l  unfp T }V(X)d" (11)
Q

forallv e Wé’p (Q). On the other hand, hypotheses H(f)(i) and (ii) entail
0<f(x,s)<ci(1+ |s\p_1) fora.e. xc Q andall s=0, (12)

with some c¢; > 0. By (10) and (12) we see that the sequence

{]W} is bounded in L” (Q).

Due to hypothesis H(f)(ii) and Aizicovici-Papageorgiou-Staicu [1, Proposition 16], we find that

{W} — Amy"™! weaklyin LP (Q).

Then inserting v = y, — y in (11) and using (9) lead to
lim (A(yn), yn —y) = 0.
n—oo
We can apply Proposition 3 to obtain y, — y in Wé’p (Q). Letting n — oo in (11) gives

(A(y), v) = im/yp‘lv dx forallv e Wé’p(Q),
Q

so y is a nontrivial nonnegative solution of the eigenvalue problem
-Apy(x) = Any()P1 inQ
y=0 on 0Q.

Consequently, y must be nodal because m = 2 and y # 0, which contradicts that y = 0 in Q. This contradiction
proves that the sequence {uy} is bounded in Wé’p (Q).
Along a relabeled subsequence, we may assume that

un — u, weakly in Wé’p (Q) and un — uy in LP(Q), (13)
for some u) € Wé’p (Q). In addition, we may suppose that
un(x)” = uj(x)” forae.x € Q. (14)
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From u, € int(C3(Q).) and (5), through the Lemma in Lazer-Mckenna [23], we obtain
0su) <y e I (Q). (15)
On account of (13)-(15) we have
u — (uy)” weaklyin L? Q) (16)

(see also Gasinski-Papageorgiou [16, p. 38]).
Setting u = un € Sy and v = up — uy € W-P(Q) in (6), in the limit as n — oo we get

r}Lngo<Aun, Un — u;) =0.
The property of A to be of type (S+) (according to Proposition 3) implies

Un — uy in Wé’p(_Q).

The above convergence and Sobolev embedding theorem enable us to deduce

/|Vu;(x)\l"2 (vu,*l(x), Vv(x))RN dx = / [Au;(x)‘y +fx, u;(x))] v(x) dx
Q 0

forallv Wé’p (Q). Consequently, we have
uy € Sy C int(CH(Q)+) and u) = infS,,
which completes the proof. o

In the next lemma we examine monotonicity and continuity properties of the map A — u; from £ = (0, A"]
to C3(Q).

Lemma 10. Suppose that hypotheses H(f) hold. Then the map T': £ = (0,A"] — C§(Q) given by I'(Q) = u)
fulfills:

)] I is strictly increasing, in the sense that
0<u<As<A” implies uj - u; € int(C(l)(ﬁ)Jr);

(ii) I is left continuous.

Proof. (i) It follows from [32, Proposition 5] that there exists a solution uy € Sy C int(C3(Q).) such that
uj - uy € int(CH(Q)4).

The desired conclusion is the direct consequence of the inequality u; < Up.

(ii) Let {An} C (0,A"]and A € (0, A"] satisfy An 1 A. Denote for simplicity un = uy = I'(An) € Sy, C int(C5(Q)-).
It holds

(Aun), v) = / Mnttn () + Fx, n(0)]V(x) dx )

Q

forallv e Wé’p (Q). By assertion (i) we know that
O<uy sunsu}. (18)

Choosing v = uy in (17) and proceeding as in the proof of Lemma 9, we verify that the sequence {u,} is
bounded in W}*(Q). Given r > N, it is true that (u),)" € int(C4(Q2)-), so there is a constant ¢, > 0 such that

~ *
uy < c2(uy,)" = coul,
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or

ﬁfy > cz_Ty u?.
We can make use of the Lemma in Lazer-Mckenna [23] for having
0<uy <uy €eL'(Q) forall n.
Moreover, hypothesis H(f)(i) and (18) render that
the sequence {f(-, un(-))} is bounded in L'(Q).

Therefore, utilizing Guedda-Véron [20, Proposition 1.3] we obtain the uniform bound

[unl| =) < c3 foralln, (19)
with some c3 > 0. Besides, the linear elliptic problem

-Av(x) =g, (x) inQ

v=0 onoQ,

where g3 (1) = Anun(-)” + f(-, un(-)) € L'(Q), has a unique solution v;, € WS”(Q) (see, e.g., [19, Theorem
9.15]). Owning to r > N, the Sobolev embedding theorem provides

vy, € C5(Q),
with @ = 1 - ¥ For wy := Vv, , we have wp € C®%(Q,R") and
—div (|[Vun(¥)P 2 Vun(x) -wn(x)) =0 inQ
up=0 on 0Q.

This allows us to apply the nonlinear regularity up to the boundary in Liebermann [24, 25] finding that u, ¢
C(l)’ﬁ (Q) with some g8 € (0, 1) for all n. Here the uniform estimate in (19) is essential. The compactness of the
embedding of Cé’ﬂ (Q) in C}(Q) and the monotonicity of the sequence {u,} guarantee

un — U, in C3(Q)

for some u; € C}(Q).
We claim that u; = u;. Arguing by contradiction, suppose that there exists x* € Q satisfying

n(x") <uy(x).
The known monotonicity property of {u,} entails
up(x) < un(x’) = uy, (x") foralln,
which contradicts assertion (i). It results that &, = u; =I'(A), thereby
T'An) =un —uy=T(A) asn — oo,
completing the proof. O

Next we turn to the semicontinuity properties of the set-valued mapping A.

Lemma 11. Assume that hypotheses H(f) hold. Then the set-valued mapping A: L — 26@ g sequentially
upper semicontinuous.
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Proof. According to Proposition 6 we are going to show that for any closed set D ¢ C3(Q), one has that
A (D):={AeR : AQ)ND+#0}
is closed in R. Let {An} € A™(D) verify An — Aas n — os. So,
AAr) N D # 0,
hence there exists a sequence {un} C int(C3(Q).) satisfying
un € AAy)ND foralln e N,

in particular
/|Vun(x)|1"’2 (Vun(x), VV(X)) gy dx = / [Anun(x)” + f(x, un(x))| v(x) dx (20)
1) Q

forallv e Wé’p (Q). As in the proof of Lemma 9, we can show that the sequence {uy} is bounded in Wé’p Q).
Therefore we may assume that

un — u weakly in Wé’p (Q) andun — u in LP(Q). 21

for some u € Wé’p (Q). Furthermore, the sequences {f(, un(-))} and {u;,)’} are bounded in IP'(Q) as already
demonstrated in the proofs of Lemmas 9 and 10. In (20), we choose v = un —u € Wcl)’p () and then pass to
the limit as n — oo. By means of (21) we are led to

lim (A(un), un —u) = 0.

n—oo

Since A is of type (S+), we can conclude
un — u in WyP(Q). (22)
On account of (20), the strong convergence in (22) and Sobolev embedding theorem imply
/ |Vu(x)P2 (Vu(x), Vv(x))RN dx = / [Au(x)™ + f(x, u(s))] v(x) dx
Q Q

forallv e Wé’p(_()). Thisreads as u € S = A(A).
It remains to check that u € D. Fix A € £ such that

A<y <A™ foralln.
By Lemma 10 (i) we know that
uy <uy, <up foralln.

The same argument as in the proof of Lemma 10 confirms that, for r > N fixed, the function x — Ayun(x)™” +
f(x, un(x)) is bounded in L"(Q). Let g, (x) = Anun(x)™” + f(x, un(x)) € L'(Q) and consider the linear Dirichlet
problem

(23)

-Av(x) = g;,(x) inQ
v=0 on 0Q.

The standard existence and regularity theory (see, e.g., Gilbarg-Trudinger [19, Theorem 9.15]) ensure that prob-
lem (23) has a unique solution

vy, € W*'(Q) C C5*(Q) with Vallcragy < Cas
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with a constant ¢4 > 0 and a = 1 - . Denote wn(x) = Vv, (x) for all x € Q. It holds w, € C%*(Q) thanks to
vy, € C5*(Q). Notice that

—div (|[Vun(X)P 2 Vun(x) - wn(x)) =0 inQ
un=0 on oQ.

The nonlinear regularity up to the boundary in Liebermann [24, 25] reveals that u, € C é’ﬁ (Q)foralln € Nwith
some f € (0, 1). The compactness of the embedding of Cé’ﬁ (Q) in CA(Q) and (22) yield the strong convergence

un — u in C3(Q).
Recalling that D is closed in C3(Q) it results that u € A(A) N D, i.e., A € A™(D). ]

Lemma 12. Suppose that hypotheses H(f) hold. Then the set-valued mapping A: L — 26 g sequentially
lower semicontinuous.

Proof. In order to refer to Proposition 7, let {An} C L satisfyAn - A # Oasn — ocandletw € §; C
int(C3(Q)+). For each n € N, we formulate the Dirichlet problem

=Apu(x) = Aaw(x)?” + f(x, w(x)) inQ
u>0 inQ (24)
u=0 on 0Q.

In view of w > 1, € int(C}(Q)-) (see (5)) and

Aaw(X)7 + f(x, w(x)) 20 forallx € Q

Aaw()™ + f(x, w(x)) # 0,
it is obvious that problem (24) has a unique solution u% € int(C}(2)-). Relying on the growth condition for
f (see hypotheses H(f)(i) and (ii)), through the same argument as in the proof of Lemma 9 we show that

the sequence {u3} is bounded in W(l)’p (). Then Proposition 1.3 of Guedda-Véron [20] implies the uniform
boundedness

up € L=(Q) and ||up||~q) < cs foralln €N,

with a constant ¢5 > 0. As in the proof of Lemma 11, we set g, (x) = Anw(x)™ + f(x, w(x)) and consider the
Dirichlet problem (23) to obtain that {u3} is contained in C(l)’ﬂ (Q) for some 8 € (0, 1). Due to the compactness
of the embedding of C(l)’ﬁ (Q) in C}(Q), we may assume

ud —»u in CH(Q) as n — oo,
with some u € C3(Q). Then (24) yields

“Apu(x) = Aw(x)” + f(x,w(x)) inQ
u>0 in Q

u=0 on 00.

Thanks to w € A(A), a simple comparison justifies u = w. Since every convergent subsequence of {u,} con-
verges to the same limit w, it is true that
lim ud = w.

n—oo
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Next, for each n € N, we consider the Dirichlet problem
=Apu(x) = AquR()” + fx, u(x)) inQ
u>0 in Q

u=0 on oQ.

Carrying on the same reasoning, we can show that this problem has a unique solution u} belonging to
int(C3(Q).) and that

lim ui =w.
n—oo

Continuing the process, we generate a sequence {u’,i}n, =1 such that

~Apuk(x) = Luk 1007 + f(x, ukt(0) inQ
uk >0 inQ
uk =0 on 00,

and

lim uk =w forallk € N. (25)

n—oo

Fixn > 1. As before, based on the nonlinear regularity [24, 25], we notice that the sequence {uk } ., is relatively
compact in C}(Q), so we may suppose

uk - up in CH(Q) as k — oo,

for some un € C(Q). Then it appears that
“Apun(x) = Anun()” + fx, un(x))  inQ
un >0 inQ
Un=0 onoQ,

which means that u, € A(Ay).
The convergence in (25) and the double limit lemma (see, e.g., [13, Proposition A.2.35]) result in

Un —w in Cy(Q) as n — oo.

By Proposition 7 we conclude that A is lower semicontinuous. O

Proof of Theorem 2. (i) It suffices to apply Lemmas 11 and 12.

(ii) The stated conclusion is a direct consequence of Lemmas 9 and 10. m|
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