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FOR HEMIVARIATIONAL INEQUALITY

INVOLVING p(x)-LAPLACIAN
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Abstract. In this paper we study the nonlinear elliptic problem with p(x)-Laplacian (hemi-
variational inequality). We prove the existence of a nontrivial solution. Our approach is based
on critical point theory for locally Lipschitz functionals due to Chang [J. Math. Anal. Appl.
80 (1981), 102–129].
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1. INTRODUCTION

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω and N > 2. In this paper
we study the following nonlinear elliptic differential inclusion with p(x)-Laplacian{

−∆p(x)u− λ|u(x)|p(x)−2u(x) ∈ ∂j(x, u(x)) a.e. in Ω,

u = 0 on ∂Ω,
(1.1)

where p : Ω→ R is a continuous function satisfying

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < N <∞ (1.2)

and

p+ ≤ p̂∗ :=
Np−

N − p−
, (1.3)

and j(x, t) is a function which is locally Lipschitz in the t-variable (in general it can be
nonsmooth) and measurable in x-variable. By ∂j(x, t) we denote the subdifferential
with respect to the t-variable in the sense of Clarke [4]. The operator

∆p(x)u := div
(
|∇u(x)|p(x)−2∇u(x)

)
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is the so-called p(x)-Laplacian, which becomes p-Laplacian when p(x) ≡ p. Problems
with p(x)-Laplacian are more complicated than with p-Laplacian, in particular, they
are inhomogeneous and possess “more nonlinearity".

In our problem appears λ, for which we assume that λ < p−

p+ λ∗, where λ∗ is
introduced by the following Rayleigh quotient (see Fan-Zhang [10]):

λ∗ = inf
u∈W 1,p(x)

0 (Ω)\{0}

∫
Ω

|∇u(x)|p(x)dx

∫
Ω

|u(x)|p(x)dx

. (1.4)

It may happen that λ∗ = 0 (see Fan-Zhang [10]).
Our starting point is the paper of Gasiński-Papageorgiou [13], where the au-

thors consider a similar problem but with the constant exponent, i.e., when
p(x) ≡ p. Problems with a constant exponent can be also found in the papers of
Gasiński-Papageorgiou [14–16] and Kourogenic-Papageorgiou [20].

More recently, the study of p(x)-Laplacian problems has attracted more and more
attention. In the papers of Fan-Zhang-Zhao [9] and Fan [6], we can find a theory
concerning the eigenvalues of the p(x)-Laplacian with both Dirichlet and Neumann
boundary conditions. In Fan-Zhang [10] several sufficient conditions are indicated to
obtain existence results for a Dirichlet boundary value problem with p(x)-Laplacian.
In particular the existence of infinitely many solutions is shown. In Fan [7] a multi-
plicity theorem is proved for the problem with singular coefficients.

Finally we have papers where differential inclusions involving p(x)-Laplacian
are studied. In Ge-Xue [17] and Qian-Shen [22], a differential inclusion involving
p(x)-Laplacian and Clarke subdifferential with Dirichlet boundary condition is consid-
ered. In the last paper the existence of two solutions of constant sign is proved. Differ-
ential inclusions with Neumann boundary conditions were studied in Qian-Shen-Yang
[23] and Dai [5]. In Qian-Shen-Yang [23], the inclusions involve a weighted function
which is indefinite. In Dai [5], the existence of infinitely many nonnegative solu-
tions is proved. In Ge-Xue-Zhou [18], authors proved sufficient conditions to obtain
radial solutions for differential inclusions with p(x)-Laplacian. All the above men-
tioned papers deal with the so called hemivariational inequalities, i.e. the multivalued
part is provided by the Clarke subdifferential of the nonsmooth potential (see e.g.
Naniewicz-Panagiotopoulos [21]).

The techniques of this paper differ from those used in the above mentioned papers.
Our method is more direct and is based on the critical point theory for nonsmooth
Lipschitz functionals of Chang [3]. For the convenience of the reader in the next section
we briefly present the basic notions and facts from the theory, which will be used in
the study of problem (1.1). Moreover, we present the main properties of the general
Lebesgue and variable Sobolev spaces.
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2. MATHEMATICAL PRELIMINARIES

Let X be a Banach space and X∗ its topological dual. By ‖·‖ we will denote the norm
in X and by 〈·, ·〉 the duality brackets for the pair (X,X∗). A function f : X → R
is said to be locally Lipschitz, if for every x ∈ X there exists a neighbourhood U of
x and a constant K > 0 depending on U such that |f(y) − f(z)| ≤ K‖y − z‖ for
all y, z ∈ U . From convex analysis it is well known that a proper, convex and lower
semicontinuous function g : X → R = R∪{+∞} is locally Lipschitz in the interior of
its domain domg = {x ∈ X : g(x) <∞}.

For a locally Lipschitz function f : X → R we define the generalized directional
derivative of f at x ∈ X in the direction h ∈ X by

f0(x;h) = lim sup
x′→0,λ→0

f(x+ x′ + λh)− f(x+ x′)

λ
.

The function h 7−→ f0(x, h) ∈ R is sublinear, continuous so it is the support function
of a nonempty, convex and w∗-compact set

∂f(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ f0(x, h) for all h ∈ X}.

The set ∂f(x) is known as the subdifferential of f at x. If f, g : X → R are two locally
Lipschitz functions, then ∂(f + g)(x) ⊆ ∂f(x) + ∂g(x) and ∂(tf)(x) = t∂f(x) for all
t ∈ R.

A point x ∈ X is said to be a critical point of the locally Lipschitz function
f : X → R, if 0 ∈ ∂f(x). If x ∈ X is local minimizer or local maximizer of f , then x
is a critical point.

We say that f satisfies the “nonsmooth Palais-Smale condition” (nonsmooth
PS-condition for short), if any sequence {xn}n≥1 ⊆ X such that {f(xn)}n≥1 is
bounded and m(xn) = min{‖x∗‖∗ : x∗ ∈ ∂f(xn)} → 0 as n → ∞, has a strongly
convergent subsequence.

The first theorem is due to Chang [3] and extends to a nonsmooth setting the well
known “mountain pass theorem” due to Ambrosetti-Rabinowitz [1].

Theorem 2.1. If X is a reflexive Banach space, R : X → R is a locally Lipschitz
functional satisfying the PS-condition and for some ρ > 0 and y ∈ X such that
‖y‖ > ρ, we have

max{R(0), R(y)} < inf
‖x‖=ρ

{R(x)} =: η,

then R has a nontrivial critical point x ∈ X such that the critical value c = R(x) ≥ η
is characterized by the following minimax expression

c = inf
γ∈Γ

max
0≤τ≤1

{R(γ(τ))},

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = y}.

In order to discuss problem (1.1), we need to state some properties of the spaces
Lp(x)(Ω) and W 1,p(x)(Ω), which we call generalized Lebesgue-Sobolev spaces (see
Fan-Zhao [11,12]).
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Let
E(Ω) = {u : Ω −→ R : u is measurable}.

Two functions in E(Ω) are considered to be one element of E(Ω), when they are equal
almost everywhere. Define

Lp(x)(Ω) =
{
u ∈ E(Ω) :

∫
Ω

|u(x)|p(x)dx <∞
}
,

with the norm

‖u‖p(x) = ‖u‖Lp(x)(Ω) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)

λ

∣∣∣p(x)

dx ≤ 1
}
.

Then (Lp(x)(Ω), ‖ · ‖p(x)) is a Banach space.
The generalized Lebesgue-Sobolev space W 1,p(x)(Ω) is defined as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)}

with the norm
‖u‖ = ‖u‖W 1,p(x)(Ω) = ‖u‖p(x) + ‖∇u‖p(x).

By W 1,p(x)
0 (Ω) we denote the closure of C∞0 (Ω) in W 1,p(x)(Ω).

Lemma 2.2 (Fan-Zhao [11]). If Ω ⊂ RN is an open domain, then:

(a) the spaces Lp(x)(Ω), W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive Ba-

nach spaces;
(b) the space Lp(x)(Ω) is uniformly convex;
(c) if 1 ≤ q(x) ∈ C(Ω) and q(x) ≤ p∗(x) (respectively q(x) < p∗(x)) for any x ∈ Ω,

where

p∗(x) =

{
Np(x)
N−p(x) , p(x) < N,

∞, p(x) ≥ N,

then W 1,p(x)(Ω) is embedded continuously (respectively compactly) in Lq(x)(Ω);
(d) Poincaré inequality holds in W

1,p(x)
0 (Ω), i.e., there exists a positive constant c

such that
‖u‖p(x) ≤ c‖∇u‖p(x) for all u ∈W 1,p(x)

0 (Ω);

(e) (Lp(x)(Ω))∗ = Lp
′(x)(Ω), where 1

p(x) + 1
p′(x) = 1 and for all u ∈ Lp(x)(Ω) and

v ∈ Lp′(x)(Ω), we have∫
Ω

|uv|dx ≤
( 1

p−
+

1

p′−

)
‖u‖p(x)‖v‖p′(x).

Lemma 2.3 (Fan-Zhao [11]). Let ϕ(u) =
∫
Ω

|u(x)|p(x)dx for u ∈ Lp(x)(Ω) and let

{un}n≥1 ⊆ Lp(x)(Ω). Then:
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(a) for u 6= 0, we have
‖u‖p(x) = a⇐⇒ ϕ

(u
a

)
= 1;

(b) we have

‖u‖p(x) < 1 ⇐⇒ ϕ(u) < 1,

‖u‖p(x) = 1 ⇐⇒ ϕ(u) = 1,

‖u‖p(x) > 1 ⇐⇒ ϕ(u) > 1;

(c) if ‖u‖p(x) > 1, then

‖u‖p
−

p(x) ≤ ϕ(u) ≤ ‖u‖p
+

p(x);

(d) if ‖u‖p(x) < 1, then

‖u‖p
+

p(x) ≤ ϕ(u) ≤ ‖u‖p
−

p(x);

(e) we have
lim
n→∞

‖un‖p(x) = 0 ⇐⇒ lim
n→∞

ϕ(un) = 0;

(f) we have
lim
n→∞

‖un‖p(x) =∞ ⇐⇒ lim
n→∞

ϕ(un) =∞.

Similarly to Lemma 2.3, we have the following result.

Lemma 2.4 (Fan-Zhao [11]). Let Φ(u) =
∫
Ω

(|∇u(x)|p(x) + |u(x)|p(x))dx for u ∈

W 1,p(x)(Ω) and let {un}n≥1 ⊆W 1,p(x)(Ω). Then:

(a) for u 6= 0, we have
‖u‖ = a ⇐⇒ Φ

(u
a

)
= 1,

(b) we have

‖u‖ < 1 ⇐⇒ Φ(u) < 1,

‖u‖ = 1 ⇐⇒ Φ(u) = 1,

‖u‖ > 1 ⇐⇒ Φ(u) > 1;

(c) if ‖u‖ > 1, then
‖u‖p

−
≤ Φ(u) ≤ ‖u‖p

+

;

(d) if ‖u‖ < 1, then
‖u‖p

+

≤ Φ(u) ≤ ‖u‖p
−

;

(e) we have
lim
n→∞

‖un‖ = 0⇐⇒ lim
n→∞

Φ(un) = 0;

(f) we have
lim
n→∞

‖un‖ =∞⇐⇒ lim
n→∞

Φ(un) =∞.
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In what follows, we make use of the following simple fact.

Lemma 2.5. Let u ∈ Lp(x)(Ω). Then:

(a) |u|p(x)−1 ∈ Lp′(x)(Ω);

(b)
∥∥|u|p(x)−1

∥∥
p′(x)

≤ 1 + ‖u‖p
+

p(x).

Proof. Part (a) is obvious. To prove part (b), note that if ‖ |u|p(x)−1‖p′(x) ≤ 1, then
the inequality in (b) is evident. So, we can assume that ‖ |u|p(x)−1‖p′(x) > 1.

If ‖u‖p(x) > 1, then from the fact that p′(x) = p(x)
p(x)−1 and Lemma 2.3(c), we have

∥∥|u|p(x)−1
∥∥p′−
p′(x)

≤
∫
Ω

|u(x)|(p(x)−1)p′(x)dx =

∫
Ω

|u(x)|p(x)dx ≤ ‖u‖p
+

p(x).

Thus, we see that ‖ |u|p(x)−1‖p′(x) ≤ ‖u‖
p+

p′−

p(x) ≤ 1 + ‖u‖p
+

p(x).
On the other hand, if ‖u‖p(x) < 1, then in a similar way, we obtain

‖ |u|p(x)−1‖p′(x) ≤ ‖u‖
p−

p′−

p(x) ≤ 1.

Consider the following function

J(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx for all u ∈W 1,p(x)

0 (Ω).

We know that J ∈ C1(W
1,p(x)
0 (Ω)) and operator −div(|∇u|p(x)−2∇u) is the derivative

operator of J in the weak sense (see Chang [2]). We denote

A = J ′ : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗.

Then

〈Au, v〉 =

∫
Ω

|∇u(x)|p(x)−2(∇u(x),∇v(x))dx for all u, v ∈W 1,p(x)
0 (Ω). (2.1)

Lemma 2.6 (Fan-Zhang [8]). If A is the operator defined above, then A is a conti-
nuous, bounded, strictly monotone and maximal monotone operator of type (S+), i.e.,
if un → u weakly in W 1,p(x)

0 (Ω) and

lim sup
n→∞

〈Aun, un − u〉 ≤ 0,

then un → u in W 1,p(x)
0 (Ω).

In what follows, for every r ∈ R, we introduce: r+ = max{r, 0} and r− =
max{−r, 0}.
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3. EXISTENCE OF SOLUTIONS

We start by introducing our hypotheses on the function j(x, t).
H(j) j : Ω× R→ R is a function such that j(x, 0) = 0 for almost all x ∈ Ω and:

(i) for all t ∈ R, the function Ω 3 x→ j(x, t) ∈ R is measurable;
(ii) for almost all x ∈ Ω, the function R 3 t→ j(x, t) ∈ R is locally Lipschitz;
(iii) for almost all x ∈ Ω and all v ∈ ∂j(x, t), we have |v| ≤ a(x) with a(x) ∈

L∞+ (Ω) = {f ∈ L∞(Ω) : ess inf
x∈Ω

f(x) > 0};

(iv) there exists µ > p+λ+

p− such that

lim sup
|t|→0

p(x)j(x, t)

|t|p(x)
< −µ, uniformly for almost all x ∈ Ω;

(v) there exists u ∈W 1,p(x)
0 (Ω) \ {0} such that

c‖u‖p
+

≤
∫
Ω

j(x, u(x))dx, if ‖u‖ ≥ 1,

or
c‖u‖p

−
≤
∫
Ω

j(x, u(x))dx, if ‖u‖ < 1,

where c := max{ 1
p− ,

λ−
p− }.

Remark 3.1. Hypothesis H(j) (v) can be replaced by a less restrictive but “more
complicated” one, namely
(v’) there exists u ∈W 1,p(x)

0 (Ω) \ {0} such that

1

p−

∫
Ω

|∇u(x)|p(x)dx+
λ−
p−

∫
Ω

|u(x)|p(x)dx ≤
∫
Ω

j(x, u(x))dx.

We introduce two functionals K,L : W
1,p(x)
0 (Ω)→ R defined by

K(u) =

∫
Ω

1

p(x)
|∇u(x)|p(x)dx for all u ∈W 1,p(x)

0 (Ω)

and

L(u) =

∫
Ω

λ

p(x)
|u(x)|p(x)dx+

∫
Ω

j(x, u(x))dx for all u ∈W 1,p(x)
0 (Ω).

FunctionalsK,L are locally Lipschitz. Let us setR = K−L. ThenR : W
1,p(x)
0 (Ω)→ R

is also locally Lipschitz.
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Lemma 3.2. If hypotheses H(j) hold and λ ∈ (−∞, p
−

p+ λ∗) (see (1.2) and (1.4)),
then R satisfies the PS-condition.

Proof. Let {un}n≥1 ⊆ W
1,p(x)
0 (Ω) be a sequence such that {R(un)}n≥1 is bounded

and m(un)→ 0 as n→∞. We will show that the sequence {un}n≥1 ⊆W 1,p(x)
0 (Ω) is

bounded.
Suppose that this is not true. Then, passing to a subsequence if necessary, we can

assume that ‖un‖ → ∞ as n→∞.
Let yn = un

‖un‖ for all n ≥ 1. Then by passing to a further subsequence if necessary,
we may also assume that (see Lemma 2.2(c))

yn → y in Lp(x)(Ω),
yn(x)→ y(x) for a.a. x ∈ Ω,

yn → y weakly in W 1,p(x)
0 (Ω),

(3.1)

as n→∞. At the beginning, we try establish the asymptotic behaviour of the integral∫
Ω
j(x,un(x))
‖un‖α dx, where α > 1.

By virtue of the Lebourg mean value theorem (see Clarke [4]), we know that
for almost all x ∈ Ω and for all n ≥ 1, we can find vn(x) ∈ ∂j(x, knun(x)) with
0 < kn < 1, such that

|j(x, un(x))− j(x, 0)| = |〈vn(x), un(x)〉|. (3.2)

So, from hypothesis H(j)(iii), for almost all x ∈ Ω, we have

|j(x, un(x))| ≤ |j(x, 0)|+ a(x)|un(x)| ≤ a1 + a2|un(x)|, (3.3)

for some a1, a2 > 0. So for any α > 1, we can write that

∣∣∣ ∫
Ω

j(x, un(x))

‖un‖α
dx
∣∣∣ ≤ ∫

Ω

|j(x, un(x))|
‖un‖α

dx ≤
∫
Ω

a1 + a2|un(x)|
‖un‖α

dx ≤ a3

‖un‖α
+

a4

‖un‖α−1

for some a3, a4 > 0. So

j(x, un(x))

‖un‖α
dx→ 0 as n→∞. (3.4)

Because ‖un‖ → ∞ and |R(un)| ≤M for all n ≥ 1, without any loss of generality,
we can assume that ‖un‖ ≥ 1. We have∫

Ω

1

p(x)
|∇un(x)|p(x)dx−

∫
Ω

λ

p(x)
|un(x)|p(x)dx−

∫
Ω

j(x, un(x))dx ≤M. (3.5)
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Let us consider two cases.

Case 1. Let us assume that λ = λ+ > 0.
So, in particular∫

Ω

1

p+
|∇un(x)|p(x)dx−

∫
Ω

λ+

p−
|un(x)|p(x)dx−

∫
Ω

j(x, un(x))dx ≤M. (3.6)

From the definition of λ∗ (see (1.4)), we have

λ∗

∫
Ω

|un(x)|p(x)dx ≤
∫
Ω

|∇un(x)|p(x)dx for all n ≥ 1. (3.7)

Using (3.7) in (3.6), we get( 1

p+
− λ+

λ∗p−

)∫
Ω

|∇un(x)|p(x)dx−
∫
Ω

j(x, un(x))dx ≤M. (3.8)

Let us consider two subcases.

Subcase 1.1. We can choose a subsequence {un}n≥1 ⊆ Lp(x)(Ω) such that

‖∇un‖p(x) ≤ 1 for all n ≥ 1.

Then using Lemma 2.3(d) in (3.8), we have( 1

p+
− λ+

λ∗p−

)
‖∇un‖p

+

p(x) −
∫
Ω

j(x, un(x))dx ≤M.

Dividing the last inequality by ‖un‖p
+

, we obtain( 1

p+
− λ+

λ∗p−

)
‖∇yn‖p

+

p(x) −
∫
Ω

j(x, un(x))

‖un‖p+
dx ≤ M

‖un‖p+
. (3.9)

We know that 1
p+ −

λ+

λ∗p−
> 0. From this fact and (3.4), if we pass to the limit as

n→∞ in (3.9), we obtain

∇yn → 0 in Lp(x)(Ω;RN ).

Subcase 1.2. If Subcase 1.1. does not hold, then we can choose a subsequence
{un}n≥1 ⊆ Lp(x)(Ω) such that

‖∇un‖p(x) > 1 for all n ≥ 1.

Then using Lemma 2.3(c) in (3.8), we have( 1

p+
− λ+

λ∗p−

)
‖∇un‖p

−

p(x) −
∫
Ω

j(x, un(x))dx ≤M.
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Dividing the last inequality by ‖un‖p
−
, we obtain( 1

p+
− λ+

λ∗p−

)
‖∇yn‖p

−

p(x) −
∫
Ω

j(x, un(x))

‖un‖p−
dx ≤ M

‖un‖p−
. (3.10)

So again, if we pass to the limit as n→∞ in (3.10) and use (3.4), we get that

∇yn → 0 in Lp(x)(Ω;RN ).

Thus in both subcases, we obtained that

∇yn → 0 in Lp(x)(Ω;RN ). (3.11)

Case 2. Now, we assume that λ ≤ 0.
From (3.5), we have∫

Ω

1

p+
|∇un(x)|p(x)dx−

∫
Ω

j(x, un(x))dx ≤M. (3.12)

Again, let us consider two subcases.

Subcase 2.1.We can choose a subsequence {un}n≥1⊆Lp(x)(Ω) such that ‖∇un‖p(x)≤1
for all n ≥ 1.

Then using Lemma 2.3(d) in (3.12), we have

1

p+
‖∇un‖p

+

p(x) −
∫
Ω

j(x, un(x))dx ≤M.

Dividing the last inequality by ‖un‖p
+

, we obtain

1

p+
‖∇yn‖p

+

p(x) −
∫
Ω

j(x, un(x))

‖un‖p+
dx ≤ M

‖un‖p+
. (3.13)

We know that 1
p+ > 0. From this fact and (3.4), if we pass to the limit as n→∞ in

(3.13), we obtain
∇yn → 0 in Lp(x)(Ω;RN ).

Subcase 2.2. If Subcase 2.1 does not hold, so we can choose a subsequence {un}n≥1 ⊆
Lp(x)(Ω) such that ‖∇un‖p(x) > 1 for all n ≥ 1.

Then using Lemma 2.3(c) in (3.12), we have

1

p+
‖∇un‖p

−

p(x) −
∫
Ω

j(x, un(x))dx ≤M.

In a similar way like in Subcase 2.1, we obtain

∇yn → 0 in Lp(x)(Ω;RN ).
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Thus in both subcases, we obtained that

∇yn → 0 in Lp(x)(Ω;RN ). (3.14)

Using again (3.7) in (3.6) in another way, we get( λ∗
p+
− λ+

p−

)∫
Ω

|un(x)|p(x)dx−
∫
Ω

j(x, un(x))dx ≤M. (3.15)

In a similar way, considering two cases (depending on whether we choose a sub-
sequence {un}n≥1 ⊆ Lp(x)(Ω) for which ‖un‖p(x) > 1 or ‖un‖p(x) < 1 for all n ≥ 1)
and using Lemma 2.3(c), (d) and the fact that λ∗

p+ −
λ+

p− > 0, we conclude that

yn → 0 in Lp(x)(Ω). (3.16)

From (3.11), (3.14) and (3.16), we get

yn → 0 in W
1,p(x)
0 (Ω). (3.17)

But on the other hand, from the definition of yn, we know that ‖yn‖ = 1 for all
n ≥ 1, a contradiction. Thus the sequence {un}n≥1 ⊆W 1,p(x)

0 (Ω) is bounded.
Hence, by passing to a subsequence if necessary, we may assume that (see Lemma

2.2(c))
un → u weakly in W 1,p(x)

0 (Ω),
un → u in Lr(x)(Ω),

(3.18)

for any r ∈ C(Ω), with r+ = max
x∈Ω

r(x) < p̂∗ := Np−

N−p− .

Since ∂R(un) ⊆ (W
1,p(x)
0 (Ω))∗ is weakly compact, nonempty and the norm func-

tional is weakly lower semicontinuous in a Banach space, then we can find u∗n ∈ ∂R(un)
such that ‖u∗n‖∗ = m(un), for n ≥ 1.

Consider the operator A : W
1,p(x)
0 (Ω)→ (W

1,p(x)
0 (Ω))∗, defined by (2.1). In partic-

ular, we know that A is maximal monotone (see Lemma 2.6). Then, for every n ≥ 1,
we have

u∗n = Aun − λ|un|p(x)−2un − v∗n, (3.19)

where v∗n ∈ ∂ψ(un) ⊆ Lp′(x)(Ω), for n ≥ 1, with 1
p(x) + 1

p′(x) = 1 and ψ : W
1,p(x)
0 (Ω)→

R is defined by

ψ(un) =

∫
Ω

j(x, un(x))dx.

We know that if v∗n ∈ ∂ψ(un), then v∗n(x) ∈ ∂j(x, un(x)) (see Clarke [4]).
From the choice of the sequence {un}n≥1 ⊆W 1,p(x)

0 (Ω), at least for a subsequence,
we have

|〈u∗n, w〉| ≤ εn‖w‖ for all w ∈W 1,p(x)
0 (Ω), (3.20)

with εn ↘ 0.
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Putting w = un − u in (3.20) and using (3.19), we obtain

〈Aun, un − u〉 − λ
∫
Ω

|un(x)|p(x)−2un(x)(un − u)(x)dx−

−
∫
Ω

v∗n(x)(un − u)(x)dx ≤ εn‖un − u‖.
(3.21)

Using Lemma 2.2(e), we see that

λ

∫
Ω

|un(x)|p(x)−2un(x)(un − u)(x)dx ≤ λ
( 1

p−
+

1

p′−

)
‖ |un|p(x)−1‖p′(x)‖un − u‖p(x),

where 1
p(x) + 1

p′(x) = 1.
We know that {un}n≥1 ⊆ Lp(x)(Ω) is bounded, so using (3.18) and Lemma 2.5,

we can conclude that

λ

∫
Ω

|un(x)|p(x)−2un(x)(un − u)(x)dx→ 0 as n→∞

and ∫
Ω

v∗n(x)(un − u)(x)dx→ 0 as n→∞.

So from (3.21), if we pass to the limit as n→∞, we have

lim sup
n→∞

〈Aun, un − u〉 ≤ 0. (3.22)

Thus from Lemma 2.6, we have that un → u in W 1,p(x)
0 (Ω) as n → ∞. So, we have

proved that R satisfies the PS-condition.

Lemma 3.3. If hypotheses H(j) holds and λ < p−

p+ λ∗, then there exists β1, β2 > 0

such that for all u ∈W 1,p(x)
0 (Ω) with ‖u‖ < 1, we have

R(u) ≥ β1‖u‖p
+

− β2‖u‖θ,

with p+ < θ ≤ p̂∗ := Np−

N−p− .

Proof. Let ε > 0 be such that p+λ+

p− + ε < µ. From hypothesis H(j)(iv), we can find
δ > 0, such that for almost all x ∈ Ω and all t such that |t| ≤ δ, we have

j(x, t) ≤ 1

p(x)
(−µ+ ε)|t|p(x).

On the other hand, from the proof of Lemma 3.2 (see (3.3)), we know that for almost
all x ∈ Ω and all t such that |t| > δ, we have

|j(x, t)| ≤ a1 + a2|t|,
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for some a1, a2 > 0. Thus for almost all x ∈ Ω and all t ∈ R we have

j(x, t) ≤ 1

p(x)
(−µ+ ε)|t|p(x) + γ|t|θ,

with some γ > 0 and p+ < θ < p̂∗. Using this, we obtain that

R(u) =

∫
Ω

1

p(x)
|∇u(x)|p(x)dx−

∫
Ω

λ

p(x)
|u(x)|p(x)dx−

∫
Ω

j(x, u(x))dx ≥

≥
∫
Ω

1

p+
|∇u(x)|p(x)dx−

∫
Ω

λ+

p−
|u(x)|p(x)dx+

+
1

p+

∫
Ω

(µ− ε)|u(x)|p(x)dx− γ
∫
Ω

|u(x)|θdx =

=
1

p+

∫
Ω

|∇u(x)|p(x)dx+
(µ− ε
p+

− λ+

p−

)∫
Ω

|u(x)|p(x)dx− γ‖u‖θθ.

From the choice of ε, we have

µ− ε
p+

− λ+

p−
> 0,

so

R(u) ≥ β1

[ ∫
Ω

|∇u(x)|p(x)dx+

∫
Ω

|u(x)|p(x)dx
]
− γ‖u‖θθ,

where β1 := min{ 1
p+ ,

µ−ε
p+ −

λ+

p− }.
As θ ≤ p∗(x) = Np(x)

N−p(x) , then W
1,p(x)
0 (Ω) is embedded continuously in Lθ(Ω) (see

Lemma 2.2(c)). So, there exists c > 0 such that

‖u‖θ ≤ c‖u‖ for all u ∈W 1,p(x)
0 (Ω). (3.23)

Using (3.23) and Lemma 2.4(d), for all u ∈W 1,p(x)
0 (Ω) with ‖u‖ < 1, we have

R(u) ≥ β1‖u‖p
+

− β2‖u‖θ,

where β2 = γcθ.

Using Lemmas 3.2 and 3.3, we can prove the following existence theorem for
problem (1.1).

Theorem 3.4. If hypotheses H(j) holds and λ < p−

p+ λ∗, then problem (1.1) has
a nontrivial solution.



452 Sylwia Barnaś

Proof. From Lemma 3.3 we know that there exist β1, β2 > 0, such that for all u ∈
W

1,p(x)
0 (Ω) with ‖u‖ < 1, we have

R(u) ≥ β1‖u‖p
+

− β2‖u‖θ = β1‖u‖p
+
(

1− β2

β1
‖u‖θ−p

+
)
.

Since p+ < θ, if we choose ρ > 0 small enough, we will have that R(u) ≥ L > 0, for
all u ∈W 1,p(x)

0 (Ω), with ‖u‖ = ρ and some L > 0.
Now, let u ∈W 1,p(x)

0 (Ω) and c > 0 be as in hypothesis H(j)(v). We have

R(u) =

∫
Ω

1

p(x)
|∇u(x)|p(x)dx−

∫
Ω

λ

p(x)
|u(x)|p(x)dx−

∫
Ω

j(x, u(x))dx ≤

≤ 1

p−

∫
Ω

|∇u(x)|p(x)dx+
λ−
p−

∫
Ω

|u(x)|p(x)dx−
∫
Ω

j(x, u(x))dx ≤

≤ c
∫
Ω

(|∇u(x)|p(x) + |u(x)|p(x))dx−
∫
Ω

j(x, u(x))dx,

where c = max{ 1
p− ,

λ−
p− }.

Using Lemma 2.4(c) or (d) and hyphothesis H(j)(v), we get R(u) ≤ 0. This
permits the use of Theorem 2.1, which gives us u ∈W 1,p(x)

0 (Ω) such that R(u) > 0 ≥
R(0) and 0 ∈ ∂R(u). From the last inclusion we obtain

0 = Au− λ|u|p(x)−2u− v∗,

where v∗ ∈ ∂ψ(u). Hence
Au = λ|u|p(x)−2u+ v∗,

so for all v ∈ C∞0 (Ω), we have 〈Au, v〉 = λ〈|u|p(x)−2u, v〉+ 〈v∗, v〉 and thus∫
Ω

|∇u(x)|p(x)−2(∇u(x),∇v(x))RNdx =

∫
Ω

λ|u(x)|p(x)−2u(x)v(x)dx+

∫
Ω

v∗(x)v(x)dx

for all v ∈ C∞0 (Ω).
From the definition of the distributional derivative we have{
−div

(
|∇u(x)|p(x)−2∇u(x)

)
= λ|u(x)|p(x)−2u(x) + v(x) a.e. in Ω,

u = 0 on ∂Ω,
(3.24)

so {
−∆p(x)u− λ|u(x)|p(x)−2u(x) ∈ ∂j(x, u(x)) a.e. in Ω,

u = 0 on ∂Ω.
(3.25)

Therefore, u ∈W 1,p(x)
0 (Ω) is a nontrivial solution of (1.1).
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