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Abstract. In this paper, we study a class of generalized differential hemivariational inequalities of parabolic type involving
the time fractional order derivative operator in Banach spaces. We use the Rothe method combined with surjectivity of
multivalued pseudomonotone operators and properties of the Clarke generalized gradient to establish existence of solution
to the abstract inequality. As an illustrative application, a frictional quasistatic contact problem for viscoelastic materials
with adhesion is investigated, in which the friction and contact conditions are described by the Clarke generalized gradient
of nonconvex and nonsmooth functionals, and the constitutive relation is modeled by the fractional Kelvin–Voigt law.
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1. Introduction

The fractional calculus, as a natural generalization of the classical integer order calculus, provides a precise
description of some physical phenomena for viscoelastic materials, for example, fractional Kelvin–Voigt
constitutive laws and fractional Maxwell model [16,42,51]. Recent advances in the fractional calculus
concern the fractional derivative modeling in applied science, see [2,9,38], the theory of fractional dif-
ferential equations, see [21], numerical approaches for the fractional differential equations, see [26,55]
and the references therein. Another hot issue is the theory of hemivariational inequalities which is based
on properties of the Clarke generalized gradient, defined for locally Lipschitz functions. This theory has
started with the works of Panagiotopoulos, see [39,40], and has been substantially developed during the
last 30 years. The mathematical results on hemivariational inequalities have found numerous applications
to mechanics, physics and engineering, see [4,14,33,35,37,46,49,50] and the references therein. In this pa-
per, we combine these hot issues and initiate a study of a class of differential hemivariational inequalities
of parabolic type involving the time fractional order derivative operator in Banach spaces.

Let (V, ‖ · ‖V ), (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be reflexive Banach spaces. We consider the generalized
fractional differential hemivariational inequality of the following form

Project supported by the National Science Center of Poland under Maestro Project No. UMO-2012/06/A/ST1/00262,
National Science Center of Poland under Preludium Project No. 2017/25/N/ST1/00611, the International Project
co-financed by the Ministry of Science and Higher Education of Republic of Poland under Grant No.
3792/GGPJ/H2020/2017/0, NNSF of China Grant No. 11671101, Special Funds of Guangxi Distinguished Experts Con-
struction Engineering.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-018-0929-6&domain=pdf
http://orcid.org/0000-0003-1818-842X


36 Page 2 of 23 S. Zeng et al. ZAMP

Problem 1. Find u ∈ AC(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈A(C
0 Dα

t u(t)) + B(u(t)), v〉 + J0(β(t),Mu(t);Mv) ≥ 〈f(t), v〉
for all v ∈ V , a.e. t ∈ (0, T )

u(0) = u0

β′(t) = g(t,Mu(t), β(t)) for a.e. t ∈ (0, T )

β(0) = β0.

Here, A, B : V → V ∗, M : V → X, g : (0, T ) × X × Y → Y , f ∈ L∞(0, T ;V ∗), α ∈ (0, 1), u0 ∈ V and
β0 ∈ Y . The notation C

0 Dα
t u(t) stands the α-order time fractional derivative of u in the sense of Caputo

defined by
C
0 Dα

t u(t) = 0I
1−α
t u′(t) for a.e. t ∈ (0, T ),

where operator 0I
1−α
t u′(t) is the (1 − α)-order time fractional integral of u′ in the sense of Riemann–

Liouville, i.e.,

0I
1−α
t u′(t) =

1
Γ(1 − α)

∫ t

0

(t − s)−αu′(s) ds for a.e. t ∈ (0, T ).

Note that for α = 1 the formula becomes a little bit different, see formula (2.1.10) of [21]. The symbol
J0(y, x; z) denotes the Clarke generalized directional derivative of a locally Lipschitz functional J : Y ×
X → R with respect to its second variable, at a point x in the direction z, for each y ∈ Y fixed. Moreover,
∂J stands for the Clarke generalized gradient of J with respect to the last variable.

Now, we give a definition of a solution to Problem 1.

Definition 2. A pair of functions (u, β) with u ∈ AC(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) is called a solution
to Problem 1, if there exists a function ξ ∈ L2(0, T ;X∗) such that

⎧
⎪⎪⎨

⎪⎪⎩

A(C
0 Dα

t u(t)) + B(u(t)) + M∗ξ(t) = f(t) for a.e. t ∈ (0, T )

β′(t) = g(t,Mu(t), β(t)) for a.e. t ∈ (0, T )

u(0) = u0 and β(0) = β0

with ξ(t) ∈ ∂J(β(t),Mu(t)) for a.e. t ∈ (0, T ).

Systems consisting of variational inequalities and differential equations were introduced initially by
Aubin and Cellina [1] in 1984. From another point of view, they were firstly considered and systematically
studied in a framework of finite-dimensional spaces by Pang and Stewart [41] in 2008. They named this
complex system a differential variational inequality ((DVI), for short). They also indicated the applications
of DVI to several areas involving both dynamics and constraints in the inequality form, for example,
mechanical impact problems, electrical circuits with ideal diodes, the Coulomb frictional problem in
contact mechanics, economical dynamics and related models such as dynamic traffic networks. Since
then, many scientists have contributed to the development of (DVI). In 2013 Liu et al. [24] employed
the topological degree theory for multivalued maps and the method of guiding functions to establish
the existence and global bifurcation behavior for periodic solutions to a class of differential variational
inequalities in finite-dimensional spaces. In 2014 Chen and Wang [8], using the idea of (DVI), have
solved the dynamic Nash equilibrium problem with shared constraints, which involves a dynamic decision
process with multiple players. Subsequently, Ke et al. [20] in 2015 investigated a class of fractional
differential variational inequalities with decay term in finite-dimensional spaces, for details on this topic
in finite-dimensional spaces, we refer to [7,13,22,23,25,32,48] and the references therein. It should be
pointed out that all results in the aforementioned papers were considered only in finite-dimensional
spaces. Being motivated by many applied problems in engineering, operations research, economics, and
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physics, recently, Liu et al. [27], Liu et al. [28], and Liu et al. [31] have provided existence results for
a class of differential mixed variational inequalities in Banach spaces exploiting the semigroup theory,
theory of measure of noncompactness, the Filippov implicit function lemma, and a fixed point theorem
for condensing set-valued operators, etc. Very recently, Liu et al. [29,30] have initiated the study on
differential hemivariational inequalities in Banach spaces. There are only a few applications of (DVI) in
infinite-dimensional spaces which were discussed to support these theoretical findings. Furthermore, until
now, fractional differential hemivariational inequalities have not been studied in both finite and infinite-
dimensional spaces. For this reason, in this work, we will fill in this gap and develop new mathematical
tools and methods for fractional differential hemivariational inequalities.

Main novelties of the paper can be summarized as follows. First, for the first time, we apply the Rothe
method, see [17,53], to study a system of a fractional hemivariational inequality of parabolic type driven
by a nonlinear evolution equation. Until now, there are a few contributions devoted to the Rothe method
for hemivariational inequalities, see [4,18,19], and all of them investigated only a single hemivariational
inequality by using the Rothe method.

Second, the main results of the present paper can be applied to a special form of Problem 1 in which
the locally Lipschitz functional J is assumed to be independent of the function β. In this case, Problem 1
reduces to the following parabolic hemivariational inequality involving the time fractional order derivative
operator in the sense of Caputo: find u ∈ AC(0, T ;V ) such that u(0) = u0 and

〈A(C
0 Dα

t u(t)) + B(u(t)) − f(t), v〉 + J0(Mu(t);Mv) ≥ 0 (1)

for all v ∈ V and a.e. t ∈ (0, T ). This problem has been recently studied by Zeng and Migórski [54].
Third, the current paper initiates the study of a quasistatic contact problem for a viscoelastic body with

adhesion and the fractional Kelvin–Voigt constitutive law, in which the friction and contact conditions
are both described by the Clarke generalized gradient of nonconvex and nonsmooth functionals involving
adhesion.

Fourth, for our problem, if we are restricted to the case α = 1, then Problem 1 reduces to the following
differential hemivariational inequality of parabolic type: find u ∈ AC(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) such
that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈A(u′(t)) + B(u(t)), v〉 + J0(β(t),Mu(t);Mv) ≥ 〈f(t), v〉
for all v ∈ V , a.e. t ∈ (0, T )

β′(t) = g(t,Mu(t), β(t)) for a.e. t ∈ (0, T )

β(0) = β0 and u(0) = u0.

(2)

In this situation, the corresponding contact problem, see Problem 17, becomes a frictional viscoelastic
contact problem with adhesion described by the classical Kelvin–Voigt constitutive law. It is obvious that
the contact problem under consideration has the form of a differential hemivariational inequality.

The paper is organized as follows. In Sect. 2, we recall notation and auxiliary materials. Section 3
establishes a result on solvability to a class of fractional differential hemivariational inequality by using
the Rothe method and a surjectivity theorem for multivalued pseudomonotone operators. Finally, in
Sect. 4, we consider a quasistatic fractional viscoelastic contact model with adhesion, and then apply the
theoretical results from Sect. 3 to obtain the weak solvability to the contact problem.

2. Preliminaries

In this section we recall the basic notation and preliminary results which are needed in the sequel,
see [10,12,21,26,42,52]. We start by recalling important and useful properties of the fractional integral
and the Caputo derivative operators, for more details, we refer to [21,42].
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Proposition 3. Let X be a Banach space and α, β > 0. Then, the following statements hold
(a) for y ∈ L1(0, T ;X), we have 0I

α
t 0I

β
t y(t) = 0I

α+β
t y(t) for a.e. t ∈ (0, T ),

(b) for y ∈ AC(0, T ;X) and α ∈ (0, 1], we have

0I
α
t

C
0 Dα

t y(t) = y(t) − y(0) for a.e. t ∈ (0, T ),

(c) for y ∈ L1(0, T ;X), we have C
0 Dα

t 0I
α
t y(t) = y(t) for a.e. t ∈ (0, T ).

We now recall definitions and results from nonlinear analysis which can be found in [10–12,33,52].
Let X be a reflexive Banach space and 〈·, ·〉 denote the duality of X and X∗. A single-valued operator
A : X → X∗ is pseudomonotone if A is bounded (it maps bounded sets in X into bounded sets in X∗)
and for every sequence {xn} ⊆ X converging weakly to x ∈ X such that lim sup〈Axn, xn − x〉 ≤ 0, we
have

〈Ax, x − y〉 ≤ lim inf
n→∞ 〈Axn, xn − y〉 for all y ∈ X.

Obviously, an operator A : X → X∗ is pseudomonotone if and only if it is bounded, and xn → x weakly
in X, and lim sup〈Axn, xn − x〉 ≤ 0 entails

lim〈Axn, xn − x〉 = 0 and Axn → Ax weakly in X∗.

Furthermore, if A ∈ L(X,X∗) is nonnegative, then it is pseudomonotone. Moreover, the notion of pseu-
domonotonicity of a multivalued operator is recalled below.

Definition 4. A multivalued operator T : X → 2X∗
is pseudomonotone if

(a) for every v ∈ X, the set Tv ⊂ X∗ is nonempty, closed and convex;
(b) T is upper semicontinuous from each finite-dimensional subspace of X to X∗ endowed with the weak

topology;
(c) for any sequences {un} ⊂ X and {u∗

n} ⊂ X∗ such that un → u weakly in X, u∗
n ∈ Tun for all n ≥ 1

and lim sup 〈u∗
n, un − u〉 ≤ 0, we have that for every v ∈ X, there exists u∗(v) ∈ Tu such that

〈u∗(v), u − v〉 ≤ lim inf
n→∞ 〈u∗

n, un − v〉.

Let j : X → R be a locally Lipschitz function. We denote by j0(u; v) the generalized (Clarke) directional
derivative of j at the point u ∈ X in the direction v ∈ X defined by

j0(u; v) = lim sup
λ→0+,w→u

j(w + λv) − j(w)
λ

.

The generalized gradient of j : X → R at u ∈ X is defined by

∂j(u) = { ξ ∈ X∗ | j0(u; v) ≥ 〈ξ, v〉 for all v ∈ X}.

The following result provides an example of a multivalued pseudomonotone operator which is a su-
perposition of the Clarke subgradient with a compact operator, its proof can be found in [14, Proposition
5.6].

Lemma 5. Let V and X be two reflexive Banach spaces, γ : V → X be a linear, continuous, and compact
operator. We denote by γ∗ : X∗ → V ∗ the adjoint operator of γ. Let j : X → R be a locally Lipschitz
function such that

‖∂j(v)‖X∗ ≤ cj (1 + ‖v‖X) for all v ∈ X,

with cj > 0. Then the multivalued operator G : V → 2V ∗ defined by

G(v) = γ∗∂j(γ(v)) for all v ∈ V,

is pseudomonotone.

Furthermore, we recall the following surjective result, which can be found in [12, Theorem 1.3.70]
or [52].
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Theorem 6. Let X be a reflexive Banach space and T : X → 2X∗
be pseudomonotone and coercive. Then

T is surjective, i.e., for every f ∈ X∗, there exists u ∈ X such that Tu � f .

From Theorem 6, we have the following corollary.

Corollary 7. Let V be a reflexive Banach space. Assume that
(i) A : V → V ∗ is a pseudomonotone and strongly monotone operator, i.e., there exists cA > 0 such

that 〈Av − Au, v − u〉 ≥ cA‖v − u‖2 for all v, u ∈ V .
(ii) U : V → 2V ∗

is a pseudomonotone operator such that there exist cU > 0 and c∗ > 0 satisfying
‖U(v)‖V ∗ ≤ cU‖v‖ + c∗ for all v ∈ V .

If cU < cA, then A + U is surjective in V ∗.

Proof. Since A and U are pseudomonotone, it follows from [33, Proposition 3.59(ii)] that A + U is
pseudomonotone as well. Having in mind Theorem 6, it remains to prove that A + U is coercive. Indeed,
we have

〈Av + U(v), v〉 = 〈Av − A0, v〉 + 〈A0, v〉 + 〈U(v), v〉
≥ cA‖v‖2 − (‖A0‖V ∗ + ‖U(v)‖V ∗)‖v‖ ≥ (cA − cU )‖v‖2 − (‖A0‖V ∗ + c∗)‖v‖

for all v ∈ V . The smallness condition cU < cA guarantees that A + U is coercive. Therefore, from
Theorem 6, we conclude that A + U is surjective, which completes the proof of the corollary. �

Lemma 8. Let X and Y be reflexive Banach spaces, β0 ∈ Y , and u ∈ L2(0, T ;X). Suppose that F : (0, T )×
X × Y → Y satisfies the following conditions

(i) t �→ F (t, x, y) is measurable on (0, T ) for all x ∈ X and y ∈ Y .
(ii) (x, y) �→ F (t, x, y) is Lipschitz continuous, i.e., there is a constant LF > 0 such that for all (x1, y1),

(x2, y2) ∈ X × Y and a.e. t ∈ (0, T ), we have

‖F (t, x1, y1) − F (t, x2, y2)‖Y ≤ LF (‖x1 − x2‖X + ‖y1 − y2‖Y ).

(iii) t �→ F (t, 0, 0) belongs to L2(0, T ;Y ).
Then there exists β ∈ W 1,2(0, T ;Y ) a unique solution to the Cauchy problem

{
β′(t) = F (t, u(t), β(t)) for a.e. t ∈ (0, T ),

β(0) = β0,
(3)

Moreover, given ui ∈ L2(0, T ;X) and denoting by βi ∈ W 1,2(0, T ;Y ) the unique solution corresponding
to ui, for i = 1, 2, we have

‖β1(t) − β2(t)‖Y ≤ cβ

∫ t

0

‖u1(s) − u2(s)‖X ds for all t ∈ [0, T ] with cβ > 0. (4)

Proof. Given u ∈ L2(0, T ;X) we consider the function Fu : (0, T ) × Y → Y defined by

Fu(t, y) = F (t, u(t), y) for all y ∈ Y, a.e. t ∈ (0, T ).

Hypothesis (ii) implies that

‖F (t, x, y)‖Y ≤ ‖F (t, x, y) − F (t, 0, 0)‖Y + ‖F (t, 0, 0)‖Y

≤ LF (‖x‖X + ‖y‖Y ) + ‖F (t, 0, 0)‖Y for all (x, y) ∈ X × Y.

Combining the latter with hypotheses (i) and (iii), we deduce that the function t �→ F (t, u(t), y) belongs
to L2(0, T ;Y ) for all u ∈ L2(0, T ;X) and y ∈ Y , thus is, t �→ Fu(t, y) ∈ L2(0, T ;Y ) for all y ∈ Y . On the
other hand, by hypothesis (ii), for all y1, y2 ∈ Y , we get

‖Fu(t, y1) − Fu(t, y2)‖Y = ‖F (t, u(t), y1) − F (t, u(t), y2)‖Y ≤ LF ‖y1 − y2‖Y
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for a.e. t ∈ (0, T ), i.e., Fu(t, ·) is Lipschitz continuous for a.e. t ∈ (0, T ). Therefore, all conditions of [15,
Theorem 9.9, p.198] are verified. By applying this theorem, we conclude that there exists a unique function
β ∈ W 1,2(0, T ;Y ) such that (3) holds.

We now prove inequality (4). In fact, it is clear that, for any u ∈ L2(0, T ;X) fixed, the unique function
β ∈ W 1,2(0, T ;Y ) has the form

β(t) = β0 +
∫ t

0

F (s, u(s), β(s))ds for all t ∈ [0, T ].

For ui ∈ L2(0, T ;X), let βi ∈ W 1,2(0, T ;Y ) be the unique solution corresponding to ui, for i = 1, 2. So,
we have

‖β1(t) − β2(t)‖Y ≤
∫ t

0

∥
∥
∥F (s, u1(s), β1(s)) − F (s, u2(s), β2(s))

∥
∥
∥

Y
ds

≤ LF

∫ t

0

‖u1(s) − u2(s)‖X ds + LF

∫ t

0

‖β1(s) − β2(s)‖Y ds for all t ∈ [0, T ].

The Gronwall inequality (see, e.g., [47, Lemma 2.31, p.49]) entails

‖β1(t) − β2(t)‖Y ≤ LF (1 + TLF eLF T )
∫ t

0

‖u1(s) − u2(s)‖Xds for all t ∈ [0, T ].

This means that (4) holds with constant cβ = LF (1 + TLF eLF T ), which completes the proof of the
lemma. �

We conclude this section by recalling the generalized discrete version of the Gronwall inequality which
proof can be found in [43, Lemma 2].

Lemma 9. Let {un}, {vn} and {wn} be nonnegative sequences satisfying

un ≤ vn +
n−1∑

k=1

wkuk for n ≥ 1.

Then, we have

un ≤ vn +
n−1∑

k=1

vkwk exp

⎛

⎝
n−1∑

j=k+1

wj

⎞

⎠ for n ≥ 1.

Moreover, if {un} and {wn} are such that

un ≤ α +
n−1∑

k=1

wkuk for n ≥ 1,

where α > 0 is a constant, then for all n ≥ 1, it holds

un ≤ α exp

(
n−1∑

k=1

wk

)

.

3. Fractional differential hemivariational inequality

In this section, we focus our attention to the abstract differential hemivariational inequality involving
fractional derivative operator, Problem 1, and provide a result on existence of solutions for this inequality.
The method of proof relies on a surjectivity result for multivalued pseudomonotone operators and the
Rothe method.
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To provide readers with better convenience, we now introduce the standard notation following [11,
12,52]. Let V be a reflexive and separable Banach space with dual space V ∗. Subsequently, we use the
symbols 〈·, ·〉 and ‖ · ‖ to stand for the duality pairing between V ∗ and V , and a norm in V , respectively.
Let 0 < T < +∞. We use the standard Bochner–Lebesgue function space V = L2(0, T ;V ). Recall that
since V is reflexive, it is obvious that both V and its dual space V∗ = L2(0, T ;V ∗) are reflexive Banach
spaces. The notation 〈·, ·〉V∗×V stands for the duality between V and V∗. Let X and Y be other separable
and reflexive Banach spaces, X = L2(0, T ;X) and X ∗ = L2(0, T ;X∗). In the rest of the paper, we denote
by C a constant whose value may change from line to line.

Let u ∈ AC(0, T ;V ) be a solution to Problem 1 and w = C
0 Dα

t u. From Proposition 3(b), one has

u(t) = 0I
α
t w(t) + u0

for a.e. t ∈ (0, T ). Therefore, Problem 1 can be rewritten as

Problem 10. Find w ∈ L1(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈A(w(t)) + B(0Iα
t w(t) + u0), v〉 + J0(β(t), M(0Iα

t w(t) + u0);Mv) ≥ 〈f(t), v〉
for all v ∈ V , a.e. t ∈ (0, T )

β′(t) = g(t,M(0Iα
t w(t) + u0), β(t)) for a.e. t ∈ (0, T )

β(0) = β0.

Observe that the above problem can be reformulated as the following inclusion problem driven by a
fractional integral operator and a nonlinear differential equation.

Problem 11. Find w ∈ L1(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A(w(t)) + B(0Iα
t w(t) + u0) + M∗∂J(β(t), M(0Iα

t w(t) + u0)) � f(t)

for a.e. t ∈ (0, T )

β′(t) = g(t,M(0Iα
t w(t) + u0), β(t)) for a.e. t ∈ (0, T )

β(0) = β0.

(5)

We now impose the following assumptions on the data of Problem 11.
H(A): A ∈ L(V, V ∗) is coercive, i.e., there exists a constant mA > 0 such that

〈Av, v〉 ≥ mA‖v‖2 for all v ∈ V.

H(B): B ∈ L(V, V ∗).
H(J): J : Y × X → R is such that

(i) x �→ J(y, x) is locally Lipschitz for all y ∈ Y ;
(ii) there exists a constant cJ > 0 such that

‖∂J(y, x)‖X∗ ≤ cJ (1 + ‖x‖X) for all y ∈ Y and x ∈ X;

(iii) (y, x) �→ J0(y, x; v) is upper semicontinuous from Y × X into R for all v ∈ X.
H(M): M ∈ L(V,X) is compact.
H(f): f ∈ L∞(0, T ;V ∗).
H(g): g : (0, T ) × X × Y → Y is such that

(i) t �→ g(t, x, y) is measurable on (0, T ) for all x ∈ X and y ∈ Y ;
(ii) (x, y) �→ g(t, x, y) is Lipschitz continuous, i.e., there exists a constant Lg > 0 such that for all

(x1, y1), (x2, y2) ∈ X × Y and a.e. t ∈ (0, T ), we have

‖g(t, x1, y1) − g(t, x2, y2)‖Y ≤ Lg(‖x1 − x2‖X + ‖y1 − y2‖Y );

(iii) t �→ g(t, 0, 0) belongs to L2(0, T ;Y ).
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In fact, hypothesis H(J) guarantees that the subgradient operator ∂J of J(y, ·) is upper semicontin-
uous.

Lemma 12. Under hypothesis H(J) the subgradient operator

Y × X � (y, x) �→ ∂J(y, x) ⊂ X∗

is upper semicontinuous from Y × X endowed with the norm topology to the subsets of X∗ endowed with
the weak topology.

Proof. From [11, Proposition 4.1.4], it is sufficient to show that for any weakly closed subset D of X∗, the
weak inverse image (∂J)−(D) of ∂J under D is closed in the norm topology, where (∂J)−(D) is defined
by

(∂J)−(D) =
{

(y, x) ∈ Y × X | ∂J(y, x) ∩ D �= ∅}.
Let {(yn, xn)} ⊂ (∂J)−(D) be such that (yn, xn) → (y, x) in Y × X, as n → ∞ and {ξn} ⊂ X∗ be such
that ξn ∈ ∂J(yn, xn) ∩ D for each n ∈ N. The hypothesis H(J)(ii) implies that the sequence {ξn} is
bounded in X∗. Hence, from the reflexivity of X∗, without loss of generality, we may assume that ξn → ξ
weakly in X∗. The weak closedness of D guarantees that ξ ∈ D. On the other hand, ξn ∈ ∂J(yn, xn)
reveals

〈ξn, z〉X∗×X ≤ J0(yn, xn; z) for all z ∈ X.

Taking into account the upper semicontinuity of (y, x) �→ J0(y, x; z) for all z ∈ X and passing to the
limit, we have

〈ξ, z〉X∗×X = lim sup
n→∞

〈ξn, z〉X∗×X ≤ lim sup
n→∞

J0(yn, xn; z) ≤ J0(y, x; z)

for all z ∈ X. Hence ξ ∈ ∂J(y, x), and consequently, we obtain ξ ∈ ∂J(y, x) ∩ D, i.e., (y, x) ∈ (∂J)−(D).
This completes the proof of the lemma. �

Let N ∈ N+ be fixed, τ = T
N , tk = kτ , and fk

τ be defined by

fk
τ =

1
τ

∫ tk

tk−1

f(s)ds for k = 1, . . . , N.

Consider the following discretized problem corresponding to Problem 11 called the Rothe problem.

Problem 13. Find {wk
τ }N

k=1 ⊂ V , {ξk
τ }N

k=1 ⊂ X∗ and βτ ∈ W 1,2(0, T ;Y ) such that w0
τ = 0, βτ (0) = β0

and

β′
τ (t) = g(t,Mûτ (t), βτ (t)) for a.e. t ∈ (0, tk) (6)

Awk
τ + B(uk

τ ) + M∗ξk
τ = fk

τ (7)

with ξk
τ ∈ ∂J(βτ (tk),Muk

τ ), for k = 1, 2, . . . , N , where uk
τ and ûτ (t) for t ∈ (0, tk) are defined by

uk
τ = u0 +

τα

Γ(α + 1)

k∑

j=1

wj
τ [(k − j + 1)α − (k − j)α], (8)

and

ûτ (t) =

{∑N
i=1 χ(ti−1,ti](t)u

i−1
τ , 0 < t ≤ T,

u0, t = 0,
(9)

respectively. Here χ(ti−1,ti] stands for the characteristic function of the interval (ti−1, ti], i.e.,

χ(ti−1,ti](t) =
{

1, t ∈ (ti−1, ti],
0, otherwise.

First, we shall show the existence of solution to Problem 13.
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Lemma 14. Let hypotheses H(A), H(B), H(J), H(g), H(f) and H(M) hold. Then, there exists τ0 > 0
such that, for all τ ∈ (0, τ0), Problem 13 has at least one solution.

Proof. Given w0
τ , w1

τ , . . . , wn−1
τ , we will prove that there exist wn

τ ∈ V , ξn
τ ∈ X∗ and a function βτ ∈

W 1,2(0, tn;Y ) such that (6) and (7) hold.
From equality (8), we obtain elements u0

τ , u1
τ , . . . , un−1

τ . For this reason, the function ûτ in (9) is well-
defined in (0, tn). It is clear that ûτ ∈ L2(0, tn;V ) and all conditions of Lemma 8 are satisfied. Therefore,
from this lemma, there exists a unique solution βτ ∈ W 1,2(0, tn;Y ) such that Eq. (6) holds.

It remains to show that there exist elements wn
τ ∈ V and ξn

τ ∈ X∗ such that equality (7) holds. Denote

v0 = u0 +
τα

Γ(α + 1)

n−1∑

j=1

wj
τ [(n − j + 1)α − (n − j)α], c0 =

τα

Γ(α + 1)
.

To this end, we will show that the multivalued operator V � v �→ Av+B(v0+c0v)+M∗∂J(βτ (tn),M(v0+
c0v)) ⊂ V ∗ is surjective. Hypotheses H(A) and H(B) imply that operator V � v �→ Av+B(v0+c0v) ∈ V ∗

is bounded, continuous, and fulfills the condition

〈Av + B(v0 + c0v) − Au − B(v0 + c0u), v − u〉 ≥ (mA − c0‖B‖)‖v − u‖2

for all v, u ∈ V . For the mapping v �→ J(βτ (tn), v), by hypotheses H(J), H(M) and Lemma 5, we obtain
that V � v �→ M∗∂J(βτ (tn),M(v0 + c0v)) ⊂ V ∗ is pseudomonotone and

‖M∗∂J(βτ (tn),M(v0 + c0v))‖ ≤ c0cJ‖M‖2‖v‖ + ‖M‖cJ (1 + ‖M‖‖v0‖)

for all v ∈ V . Next, we choose

τ0 =
(

mAΓ(1 + α)
‖B‖ + cJ‖M‖2

) 1
α

to see that v �→ Av + B(v0 + c0v) is strongly monotone and c0cJ‖M‖2 + c0‖B‖ < mA for all τ ∈
(0, τ0). We are now in a position to apply Corollary 7 to deduce that operator v �→ Av + B(v0 + c0v) +
M∗∂J(βτ (tn),M(v0 + c0v)) is surjective for all 0 < τ < τ0. Therefore, we conclude that there exist
elements wn

τ ∈ V and ξn
τ ∈ X∗ such that equation (7) holds. This completes the proof of the lemma. �

The following result provides estimates for the sequence of solutions of the Rothe problem, Problem 13.

Lemma 15. Under assumptions H(A), H(B), H(J), H(g), H(f), and H(M), there exists τ0 > 0 and
C > 0 independent of τ , such that for all τ ∈ (0, τ0), the solutions to Problem 13 satisfy

max
k=1,2,...,N

‖wk
τ ‖ ≤ C, (10)

max
k=1,2,...,N

‖uk
τ‖ ≤ C, (11)

max
k=1,2,...,N

‖ξk
τ ‖X∗ ≤ C, (12)

where ξk
τ ∈ X∗ is such that ξk

τ ∈ ∂J(βτ (tk),M(uk
τ )) and

Awk
τ + B(uk

τ ) + M∗ξk
τ = fk

τ ,

for k = 1, 2, . . . , N.

Proof. Taking k = n in (7), we multiply equation (7) by wn
τ to get

〈Awn
τ , wn

τ 〉 + 〈Bun
τ , wn

τ 〉 + 〈ξn
τ ,Mwn

τ 〉X×X∗ = 〈fn
τ , wn

τ 〉.
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From definition of un
τ (see (8)) and hypothesis H(B), we have

〈Bun
τ , wn

τ 〉 =
〈

B(u0 +
τα

Γ(α + 1)

n∑

j=1

wj
τ [(n − j + 1)α − (n − j)α]), wn

τ

〉

≥ −‖Bu0‖V ∗‖wn
τ ‖ − τα

Γ(α + 1)

n−1∑

j=1

[(n − j + 1)α − (n − j)α]‖B‖‖wj
τ‖‖wn

τ ‖ − τα‖B‖
Γ(α + 1)

‖wn
τ ‖2.

(13)

It follows from the growth condition H(J)(ii) that

〈ξn
τ ,Mwn

τ 〉X∗×X ≥ −‖ξn
τ ‖X∗‖Mwn

τ ‖X ≥ −cJ(1 + ‖Mun
τ ‖X)‖Mwn

τ ‖X

≥ − cJ‖Mwn
τ ‖X

(

1 + ‖Mu0‖X +
τα‖M‖
Γ(1 + α)

n∑

j=1

‖wj
τ‖[(n − j + 1)α − (n − j)α]

)

≥ − (cJ‖M‖ + cJ‖M‖2‖u0‖)‖wn
τ ‖ − ταcJ‖M‖2

Γ(1 + α)
‖wn

τ ‖2

− ταcJ‖M‖2

Γ(1 + α)

n−1∑

j=1

‖wj
τ‖‖wn

τ ‖[(n − j + 1)α − (n − j)α]. (14)

From the coercivity of operator A and inequalities (13) and (14), we get

〈fn
τ , wn

τ 〉 = 〈Awn
τ , wn

τ 〉 + 〈Bun
τ , wn

τ 〉 + 〈ξn
τ ,Mwn

τ 〉X×X∗

≥ mA‖wn
τ ‖2 − τα‖B‖

Γ(α + 1)
‖wn

τ ‖2 − (‖Bu0‖V ∗ + cJ‖M‖2‖u0‖ + cJ‖M‖)‖wn
τ ‖

− τα‖B‖
Γ(1 + α)

n−1∑

j=1

‖wj
τ‖ ‖wn

τ ‖ [(n − j + 1)α − (n − j)α] − ταcJ‖M‖2

Γ(1 + α)
‖wn

τ ‖2

− ταcJ‖M‖2

Γ(1 + α)

n−1∑

j=1

‖wj
τ‖ ‖wn

τ ‖ [(n − j + 1)α − (n − j)α],

and subsequently

‖fn
τ ‖V ∗ +

τα(‖B‖ + cJ‖M‖2)
Γ(1 + α)

n−1∑

j=1

‖wj
τ‖ [(n − j + 1)α − (n − j)α]

+ ‖Bu0‖V ∗ + cJ‖M‖ + cJ‖M‖2‖u0‖ ≥
(
mA − τα(‖B‖ + cJ‖M‖2)

Γ(1 + α)

)
‖wn

τ ‖.

Taking τ0 =
(

mAΓ(1+α)
2(‖B‖+cJ‖M‖2)

) 1
α

, we deduce that mA− τα(‖B‖+cJ‖M‖2)
Γ(1+α) ≥ mA

2 for all τ ∈ (0, τ0). Therefore,
one has

2‖fn
τ ‖V ∗

mA
+

2(cJ‖M‖ + cJ‖M‖2‖u0‖ + ‖Bu0‖V ∗)
mA

+
2τα(‖B‖ + cJ‖M‖2)

mAΓ(1 + α)

n−1∑

j=1

‖wj
τ‖ [(n − j + 1)α − (n − j)α] ≥ ‖wn

τ ‖.
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Next, from hypothesis H(f), there exists a constant mf > 0 such that ‖fn
τ ‖V ∗ ≤ mf for all τ > 0 and

n ∈ N. Setting

m0 =
2mf

mA
+

2(cJ‖M‖ + cJ‖M‖2‖u0‖ + ‖Bu0‖V ∗)
mA

,

we are in a position to apply the generalized discrete Gronwall inequality, Lemma 9, to see that

‖wn
τ ‖ ≤ m0 exp

(2(‖B‖ + cJ‖M‖2)τα

mAΓ(α + 1)

n−1∑

j=1

[(n − j + 1)α − (n − j)α]
)

= m0 exp
(2(‖B‖ + cJ‖M‖2)tαn

mAΓ(1 + α)

)

≤ m1 := m0 exp
(2(‖B‖ + cJ‖M‖2)Tα

mAΓ(1 + α)

)
.

Hence, the estimate (10) is verified.
Furthermore, by equality (8), the estimate (11) is easily obtained from the following inequality

‖un
τ ‖ =

∥
∥
∥u0 +

τα

Γ(α + 1)

n∑

j=1

wj
τ [(n − j + 1)α − (n − j)α]

∥
∥
∥

≤ ‖u0‖ +
m1

Γ(α + 1)

n∑

j=1

(tαn−j+1 − tαn−j)

≤ ‖u0‖ +
m1

Γ(α + 1)
tαn

≤ m2 := ‖u0‖ +
m1T

α

Γ(α + 1)
.

Finally, the growth condition in H(J)(ii) ensures that

‖ξn
τ ‖X∗ ≤ cJ(1 + ‖Mun

τ ‖X) ≤ cJ

(
1 + ‖M‖m2

)
.

Consequently, the condition (12) follows, which completes the proof of the lemma. �

To state and prove our main result on the existence of solution to Problem 11, we define the piecewise
constant interpolant functions wτ , uτ : [0, T ] → V , fτ : [0, T ] → V ∗ and ξτ : [0, T ] → X∗ by

wτ (t) = wk
τ , t ∈ (tk−1, tk],

uτ (t) = uk
τ , t ∈ (tk−1, tk],

fτ (t) = fk
τ , t ∈ (tk−1, tk],

ξτ (t) = ξk
τ , t ∈ (tk−1, tk]

for k = 1, . . . , N .

Theorem 16. Assume that H(A), H(B), H(J), H(g), H(f), and H(M) hold. Let η ∈ (0, α) and {τn} be
a sequence such that τn → 0, as n → ∞. Then, for a subsequence still denoted by τ , we have

wτ → w weakly in L
1
η (0, T ;V ),

ξτ → ξ weakly in X ∗,

βτ → β in C(0, T ;Y ),
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as τ → 0, where (w, ξ, β) ∈ L
1
η (0, T ;V ) × X ∗ × W 1,2(0, T ;Y ) is a solution to Problem 11.

Proof. From the estimate (10), we have

‖wτ‖
1
η

L
1
η (0,T ;V )

=
∫ T

0

‖wτ (s)‖ 1
η ds =

N∑

i=1

∫ ti

ti−1

‖wi
τ‖ 1

η ds = τ

N∑

i=1

‖wi
τ‖ 1

η ≤ C.

Hence, we deduce that {wτ} is bounded in L
1
η (0, T ;V ). Therefore, without loss of generality, we may

assume that there exists w ∈ L
1
η (0, T ;V ) such that

wτ → w weakly in L
1
η (0, T ;V ), as τ → 0. (15)

For any v∗ ∈ V ∗ and t ∈ [0, T ], let e(s) = (t−s)α−1v∗χ[0,t](s) for s ∈ (0, T ). Obviously, e ∈ L
1
η′ (0, T ;V ∗),

where η′ = 1 − η. Now, we have
∣
∣
∣
∣〈v∗,

1
Γ(α)

∫ t

0

(t − s)α−1wτ (s) ds − 1
Γ(α)

∫ t

0

(t − s)α−1w(s) ds〉
∣
∣
∣
∣

≤ 1
Γ(α)

∫ t

0

|〈(t − s)α−1v∗, wτ (s) − w(s)〉|ds

≤ 1
Γ(α)

|〈e, wτ − w〉
L

1
η′ (0,T ;V ∗)×L

1
η (0,T ;V )

| → 0, as τ → 0.

Therefore, we have

0I
α
t wτ (t) → 0I

α
t w(t) weakly in V, as τ → 0, (16)

for all t ∈ [0, T ]. Moreover, using estimate (10) again, one has

‖uτ (t) − u0 − 0I
α
t wτ (t)‖ =

∥
∥
∥

τα

Γ(α + 1)

n∑

j=1

wj
τ [(n − j + 1)α − (n − j)α]

− 1
Γ(α)

∫ t

0

(t − s)α−1wτ (s) ds
∥
∥
∥ =

1
Γ(α)

∥
∥
∥

∫ tn

0

(tn − s)α−1wτ (s) ds

−
∫ t

0

(t − s)α−1wτ (s) ds
∥
∥
∥ ≤ 1

Γ(α)

∥
∥
∥

∫ tn

t

(tn − s)α−1wτ (s) ds
∥
∥
∥

+
1

Γ(α)

∥
∥
∥

∫ t

0

[(tn − s)α−1 − (t − s)α−1]wτ (s) ds
∥
∥
∥

≤ C

Γ(α)

(∫ tn

t

(tn − s)α−1 ds +
∫ t

0

|(t − s)α−1 − (tn − s)α−1| ds
)

≤ C

Γ(α + 1)
[(tn − t)α + tα + (tn − t)α − tαn] (17)

for t ∈ (tn−1, tn]. So, we conclude

uτ (t) − u0 − 0I
α
t wτ (t) → 0 strongly in V, as τ → 0

for all t ∈ [0, T ]. Combining the latter and convergence (16), we obtain

uτ (t) → 0I
α
t w(t) + u0 weakly in V, as τ → 0 (18)

for all t ∈ [0, T ]. Since the operator M is compact, we get

M(uτ (t)) → M(u0 + 0I
α
t w(t)) strongly in X, as τ → 0 (19)
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for all t ∈ [0, T ].
Analogously, for functions ûτ given by (9) and uτ , we have

‖uτ (t) − ûτ (t)‖ =
τα

Γ(α + 1)

∥
∥

n∑

j=1

wj
τ [(n − j + 1)α − (n − j)α]

−
n−1∑

j=1

wj
τ [(n − j)α − (n − j − 1)α]

∥
∥ ≤ τα

Γ(α + 1)

n−1∑

j=1

|(n − j + 1)α

− 2(n − j)α + (n − j − 1)α| · ‖wj
τ‖ +

τα

Γ(α + 1)
‖wn

τ ‖ ≤ ταC

Γ(α + 1)

+
ταC

Γ(α + 1)

n−1∑

j=1

|(n − j + 1)α − 2(n − j)α + (n − j − 1)α|

≤ ταC

Γ(α + 1)
(
1 + nα − (n − 1)α

)

for t ∈ (tn−1, tn]. This inequality together with convergence (18) and the compactness of M implies

M(ûτ (t)) → M(u0 + 0I
α
t w(t)) strongly in X, as τ → 0 (20)

for all t ∈ [0, T ].
Since w ∈ L

1
η (0, T ;V ), it is obvious that function t �→ M(0Iα

t w(t)) belongs to AC(0, T ;X). We denote
u = u0 + 0I

α
t w. We are now in a position to apply Lemma 8 to deduce that there exists a unique solution

β ∈ W 1,2(0, T ;Y ) such that

β(t) = β0 +
∫ t

0

g(s,M(u(s)), β(s)) ds

for all t ∈ [0, T ]. By hypothesis H(g)(ii) and Lemma 8, we have

‖β(t) − βτ (t)‖Y ≤ C

∫ t

0

‖M(u0 + 0I
α
t w(s)) − M(û(s))‖X ds

for all t ∈ [0, T ], thus is,

max
t∈[0,T ]

‖β(t) − βτ (t)‖Y ≤ C

∫ T

0

‖M(u0 + 0I
α
t w(s)) − M(û(s))‖X ds.

We use convergence (20), estimate (10), and the Lebesgue-dominated convergence theorem, see, e.g., [33,
Theorem 1.65], to conclude that βτ converges to β in C(0, T ;Y ).

On the other hand, estimate (12) guarantees that the sequence {ξτ} is bounded in X ∗. So, passing to
a subsequence if necessary, there exists ξ ∈ X ∗ such that

ξτ → ξ weakly in X ∗, as τ → 0. (21)

By Lemma 12, we know that the mapping (y, x) �→ ∂J(y, x) is upper semicontinuous from Y × X into
X∗ endowed with weak topology. Using this property, the relation

ξk
τ ∈ ∂J(βτ (tk),M(uk

τ )) for k = 1, 2, . . . , N,

and convergences βτ → β in C(0, T ;Y ), (19) and (21), by [33, Theorem 3.13], we deduce that

ξ(t) ∈ ∂J(β(t),M(u0 + 0I
α
t w(t)))

for a.e. t ∈ (0, T ).
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Subsequently, we consider the Nemytskii operators A and B corresponding to A and B, which are
defined by

(Av)(t) = Av(t) and (Bv)(t) = B(u0 + 0I
α
t v(t))

for v ∈ V, a.e. t ∈ (0, T ), respectively. Since A ∈ L(V, V ∗) and wτ → w weakly in L
1
η (0, T ;V ), as τ → 0,

we obtain

A wτ → A w weakly in L
1
η (0, T ;V ∗) ⊂ V∗, as τ → 0.

Using hypothesis H(B) and convergence (16), one has

B(u0 + 0I
α
t wτ (t)) → B(u0 + 0I

α
t w(t)) weakly in V ∗, as τ → 0,

for all t ∈ [0, T ]. Furthermore, we use estimate (10) again to obtain

〈B(u0 + 0I
α
t wτ (t)), v(t)〉 ≤ ‖B(u0 + 0I

α
t wτ (t))‖ ‖v(t)‖

≤
( ‖B‖C

Γ(α + 1)
tα + T‖B‖‖u0‖

)

‖v(t)‖

≤
( ‖B‖C

Γ(α + 1)
Tα + T‖B‖‖u0‖

)

‖v(t)‖.

Exploiting the Lebesgue-dominated convergence theorem again, we get from the above inequality

lim
τ→0

〈B wτ , v〉V∗×V = lim
τ→0

∫ T

0

〈B(u0 + 0I
α
t wτ (t)), v(t)〉 dt

=
∫ T

0

lim
τ→0

〈B(u0 + 0I
α
t wτ (t)), v(t)〉 dt

=
∫ T

0

〈B(u0 + 0I
α
t w(t)), v(t)〉 dt = 〈Bw, v〉V∗×V

for all v ∈ V.
From [5, Lemma 3.3], we know that fτ → f strongly in V∗, as τ → 0. We also introduce the Nemytskii

operator M : V → X corresponding to M ,

(Mv)(t) = M(v(t)) for v ∈ V, a.e. t ∈ (0, T ).

To conclude, for all v ∈ V, we obtain the following results

〈A wτ , v〉V∗×V → 〈Aw, v〉V∗×V ,

〈B wτ , v〉V∗×V → 〈Bw, v〉V∗×V ,

〈ξτ ,Mv〉X ∗×X → 〈ξ,Mv〉X ∗×X ,

〈fτ , v〉V∗×V → 〈f, v〉V∗×V ,

as τ → 0. The above convergences entail

0 ≤ lim sup
τ→0

〈A wτ , v〉V∗×V + lim sup
τ→0

〈B wτ , v〉V∗×V + lim sup
τ→0

〈ξτ ,Mv〉X ∗×X

− lim inf
τ→0

〈fτ , v〉V∗×V ≤ 〈Aw + Bw − f, v〉V∗×V + 〈ξ,Mv〉X ∗×X

for all v ∈ V. This implies

〈Aw + Bw + M∗ξ, v〉V∗×V ≥ 〈f, v〉V∗×V for all v ∈ V,
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where ξ(t) ∈ ∂J(β(t),M(u0 + 0I
α
t w(t))) for a.e. t ∈ (0, T ). We conclude that (w, β) ∈ L

1
η (0, T ;V ) ×

W 1,2(0, T ;Y ) is a solution of Problem 11, which completes the proof of the theorem. �

4. A fractional viscoelastic contact problem with friction and adhesion

In this section, the abstract theoretical results of Sect. 3 will be used to study a frictional contact problem
for a viscoelastic body with time fractional Kelvin–Voigt constitutive law and adhesion.

The physical formulation of the fractional viscoelastic contact problem is provided below. We consider
a viscoelastic body which occupies a domain Ω ⊂ R

d, where d = 2, 3. The boundary Γ = ∂Ω is assumed
to be Lipschitz continuous, and it is divided into three disjoint measurable parts ΓD, ΓN and ΓC with
meas (ΓD) > 0. The contact problem will be discussed in a finite time interval (0, T ).

For convenience of the reader, the description of basic notation is provided in Table 1.
The inner products and corresponding norms in R

d and S
d are denoted by

u · v = uivi, ‖v‖Rd = (v · v)
1
2 for all u = (ui), v = (vi) ∈ R

d,

σ : τ = σijτij , ‖τ‖Sd = (τ : τ )
1
2 for all σ = (σij), τ = (τij) ∈ S

d,

respectively. Also, we denote

Q = Ω × (0, T ), ΣD = ΓD × (0, T )
ΣN = ΓN × (0, T ), ΣC = ΓC × (0, T ).

For simplicity, we do not indicate explicitly the dependence of various functions and operators on x.
The classical formulation of the mechanical contact problem is described as follows.

Problem 17. Find a displacement field u : Q → R
d, a stress field σ : Q → S

d and a bonding field β : ΣC →
[0, 1] such that

σ(t) = C (ε(C
0 Dα

t u(t))) + E (ε(u(t))) in Q, (22)

Div σ(t) + f0(t) = 0 in Q, (23)

u(t) = 0 on ΣD, (24)

σ(t)ν = fN (t) on ΣN , (25)

− σν(t) ∈ ∂jν(β(t), uν(t)) on ΣC , (26)

Table 1. Symbol description

Symbol Description

ν = (νi) The unit outward normal vector

x ∈ Ω = Ω ∪ Γ A position vector
indices i, j, k, l They run from 1 to d and the summation convention over repeated indices is used
S

d The space of second order symmetric tensors on R
d

u = (ui) A displacement vector
σ = (σij) A stress tensor
ε(u) = (εij(u)) A linearized (small) strain tensor

εij(u) = 1
2

(
ui,j + uj,i

)
, i, j = 1, . . . , d

σν = (σν ) · ν The normal component of stress field σ on Γ
στ = σν − σνν The tangential component of stress field σ on Γ
uν = u · ν The normal component of the displacement field u on Γ
uτ = u − uνν The tangential component of the displacement field u on Γ

Divσ = (σij,j) The divergence of σ , σij,j =
∂σij

∂xj
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− στ (t) ∈ ∂jτ (β(t),uτ (t)) on ΣC , (27)

β′(t) = F (t,u(t), β(t)) on ΣC , (28)

β(0) = β0 on ΓC , (29)

u(0) = u0 in Ω. (30)

We now give a brief description of equations and relations in Problem 17. The generalized fractional
Kelvin–Voigt constitutive law of the Caputo type, see [54], for viscoelastic body is given in (22). Operators
C and E stand here for the viscosity and elasticity operators, respectively. Note that since the contact
process is assumed to be quasistatic, the acceleration term is negligible and we deal in Q with equilibrium
equation (23), where f0 denotes the time dependent density of volume forces. Moreover, conditions (24)
and (25) reveal the displacement and traction boundary conditions on parts ΓD and ΓN of the boundary,
respectively, i.e., the body is fixed on ΓD and it is subjected to the time dependent surface traction of
density fN on ΓN .

The unknown function β is a surface internal variable, which is usually called the bonding field or the
adhesion field. It describes the pointwise fractional density of active bonds on the contact surface. The
evolution of the bounding field is driven by a nonlinear ordinary differential equation (28) depending on
the displacement, and considered on contact surface ΓC . Furthermore, if β = 1 at a point of the contact
part, the adhesion is complete and all the bonds are active, and β = 0 means that all bonds are inactive
and there is no adhesion. But, when 0 < β < 1 then the adhesion is partial and a fracture β of the bonds
is active. The function β0 denotes the initial bonding field in (29). For more details on the adhesion
phenomena, see [3,6,15,36].

The contact condition (26) with adhesion is called a multivalued normal compliance contact boundary
condition, which is described by the subgradient of a nonconvex function jν , where jν is assumed to
be locally Lipschitz with respect to the last variable. On the other hand, the general tangential contact
condition (27) with adhesion, i.e., friction contact condition with adhesion, is governed by the subgradient
of a nonconvex function jτ . In fact, this contact condition without the bonding field has been treated in
many papers, see, e.g., [15,34,35,44,45]. The initial displacement is given in (30). For more details on the
mathematical theory of contact mechanics, we refer to [33,37,44,45].

Subsequently, we obtain the variational formulation of Problem 17. We will use the function spaces
V , H and H defined by

V = { v ∈ H1(Ω;Rd) | v = 0 on ΓD}, H = L2(Ω;Rd) and H = L2(Ω;Sd). (31)

The trace of an element v ∈ H1(Ω;Rd) is denoted by the same symbol v. It is obvious that H is endowed
with the Hilbertian structure by the inner product

(σ, τ )H =
∫

Ω

σij(x) τij(x) dx for σ, τ ∈ H,

and the associated norm ‖ · ‖H. For space V , we consider the inner product by

(u,v)V = (ε(u), ε(v))H for u,v ∈ V,

and the associated norm ‖ · ‖V . Recall that, since meas (ΓD) > 0, we know that V is a real Hilbert space.
From the Sobolev trace theorem, there exists ck > 0 (the Korn constant) such that

‖v‖L2(ΓC ;Rd) ≤ ck‖γ‖ ‖v‖V for all v ∈ V,

where ‖γ‖ denotes the norm of the trace operator γ : V → L2(ΓC ;Rd).
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In the study of Problem 17, the viscosity operator C : Ω×S
d → S

d and elasticity operator E : Ω×S
d →

S
d satisfy the following hypotheses.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C : Ω × S
d → S

d is such that

(a) C (x, ε) = a(x)ε for a.e. x ∈ Ω and all ε ∈ S
d,

(b) a(x) = (aijkl(x)) with aijkl ∈ L∞(Ω),

(c) aijkl(x)εijεkl ≥ ma ‖ε‖2
Sd for a.e. x ∈ Ω,

and all ε = (εij) ∈ S
d with ma > 0.

(32)

⎧
⎪⎨

⎪⎩

E : Ω × S
d → S

d is such that

(a) E (x, ε) = b(x)ε for a.e. x ∈ Ω and all ε ∈ S
d,

(b) b(x) = (bijkl(x)) with bijkl ∈ L∞(Ω).

(33)

The normal potential jν : ΓC × R × R → R and tangential function jτ : ΓC × R × R
d → R have the

following properties.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : ΓC × R × R → R is such that

(a) jν(·, r, s) is measurable on ΓC for all r, s ∈ R and

jν(·, 0, 0) ∈ L1(ΓC),

(b) jν(x, r, ·) is locally Lipschitz on R for all r ∈ R and a.e. x ∈ ΓC ,

(c) |∂jν(x, r, s)| ≤ cν(1 + |s|) for all r, s ∈ R and a.e. x ∈ ΓC

with cν > 0,

(d) either jν(x, r, ·) or − jν(x, r, ·) is regular for a.e. x ∈ ΓC and r ∈ R,

(e) (r, s) �→ j0
ν(x, r, s; z) is upper semicontinuous for all z ∈ R

and a.e. x ∈ ΓC , where j0
ν denotes the Clarke derivative

of s �→ jν(x, r, s) in direction z.

(34)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jτ : ΓC × R × R
d → R is such that

(a) jτ (·, r, ξ) is measurable on ΓC for all (r, ξ) ∈ R × R
d and

jτ (·, 0,0) ∈ L1(ΓC),

(b) jτ (x, r, ·) is locally Lipschitz on R
d for all r ∈ R and a.e. x ∈ ΓC ,

(c) ‖∂jτ (x, r, ξ)‖Rd ≤ cτ (1 + ‖ξ‖Rd) for all (r, ξ) ∈ R × R
d

and a.e. x ∈ ΓC with cτ > 0,

(d) either jτ (x, r, ·) or − jτ (x, r, ·) is regular for a.e. x ∈ ΓC and r ∈ R,

(e) (r, ξ) �→ j0
τ (x, r, ξ;η) is upper semicontinuous for all η ∈ R

d

and a.e. x ∈ ΓC , where j0
τ denotes the Clarke derivative

of ξ �→ jτ (x, r, ξ) in direction η.

(35)

In conditions (34)(c) and (35)(c), the symbols ∂jν and ∂jτ stand for the Clarke generalized gradient
of jν and jτ with respect to their last variables, respectively. Subsequently, if we suppose that (34)(d)
and (35)(d) hold, we mean that “either jν(x, r, ·) and jτ (x, r, ·) are regular” or “either −jν(x, r, ·) and
−jτ (x, r, ·) are regular” for all r ∈ R and a.e. x ∈ ΓC . Note that examples of functions which satisfy
conditions (34) and (35) can be found in [3, Example 18].
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The initial conditions, densities of volume forces and surface tractions satisfy the following regularity
hypotheses.

u0 ∈ V, β0 ∈ L2(ΓC), f0 ∈ L∞(0, T ;L2(Ω;Rd)), fN ∈ L∞(0, T ;L2(ΓN ;Rd)). (36)

The adhesive evolution rate function F satisfies the following condition.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F : ΓC × (0, T ) × R
d × R → R is such that

(a) F (·, ·, ξ, r) is measurable on ΓC × (0, T ) for all (ξ, r) ∈ R
d × R,

(b) |F (x, t, ξ1, r1) − F (x, t, ξ2, r2)| ≤ LF (‖ξ1 − ξ2‖Rd + |r1 − r2|)
for a.e. (x, t) ∈ ΓC × (0, T ) and all (ξi, ri) ∈ R

d × R, i = 1, 2,

with LF > 0,

(c) F (x, t, ξ, 0) = 0, F (x, t, ξ, r) ≥ 0 for r ≤ 0, and F (x, t, ξ, r) ≤ 0

for r ≥ 1, for a.e. (x, t) ∈ ΓC × (0, T ), and for all ξ ∈ R
d.

(37)

We now focus on the variational formulation of the contact problem (22)–(30). We suppose in what
follows that (u,σ) are smooth functions on Q which solve (22)–(30). For any v ∈ V fixed, we multiply
equilibrium equation (23) by v and then use the Green formula, cf. [33, Theorem 2.25] to get

〈σ(t), ε(v)〉H = 〈f0(t),v〉H +
∫

Γ

σ(t)ν · v dΓ

for a.e. t ∈ (0, T ). Recalling that
∫

Γ

σ(t)ν · v dΓ =
∫

ΓD

σ(t)ν · v dΓ +
∫

ΓN

σ(t)ν · v dΓ +
∫

ΓC

σ(t)ν · v dΓ,

and applying boundary conditions (24) and (25), we have
∫

Γ

σ(t)ν · v dΓ =
∫

ΓN

fN (t) · v dΓ +
∫

ΓC

σ(t)ν · v dΓ

for a.e. t ∈ (0, T ), It follows from the Riesz representation principle that there exists an element f ∈ V∗

such that
〈f(t),v〉 = (f0(t),v)H + (fN (t),v)L2(ΓN ;Rd)

for all v ∈ V , a.e. t ∈ (0, T ). From the decomposition formula, see (6.33) in [33], we obtain

〈σ(t), ε(v)〉H = 〈f(t),v〉 +
∫

ΓC

(
σν(t)vν + στ (t) · vτ

)
dΓ (38)

for a.e. t ∈ (0, T ). On the other hand, by contact conditions (26), (27), and the definition of the subgra-
dient, we obtain

− σν(t)vν ≤ j0
ν(β(t), uν(t); vν), −στ (t) · vτ ≤ j0

τ (β(t),uτ (t);vτ ) on ΣC . (39)

Putting the fractional Kelvin–Voigt constitutive law (22), and inequalities (39) into (38), we have
〈
C (ε(C

0 Dα
t u(t))), ε(v)

〉

H +
〈
E (ε(u(t))), ε(v)

〉

H

+
∫

ΓC

j0
ν(β(t), uν(t); vν) + j0

τ (β(t),uτ (t);vτ ) dΓ ≥ 〈f(t),v〉

for a.e. t ∈ (0, T ). Finally, using conditions (28)–(30) and the last inequality, we obtain the following
variational formulation of Problem 17.
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Problem 18. Find u ∈ W 1,2(0, T ;V ) and β ∈ W 1,2(0, T ;L2(ΓC)) such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
C (ε(C

0 Dα
t u(t))), ε(v)

〉

H +
〈
E (ε(u(t))), ε(v)

〉

H

+
∫

ΓC

(
j0
ν(uν(t); vν) + j0

τ (uτ (t);vτ )
)

dΓ ≥ 〈f(t),v〉
for all v ∈ V, a.e. t ∈ (0, T ),

β′(t) = F (t,u(t), β(t)) on ΣC ,

β(0) = β0 in ΓC ,

u(0) = u0 in Ω.

(40)

Note that Problem 18 represents a differential hemivariational inequality involving the Caputo time
fractional derivative operator. Since W 1,2(0, T ;V ) ⊂ C(0, T ;V ), it is clear that the initial condition has
a meaning in the space V . We have the following existence result.

Theorem 19. Assume hypotheses (32)–(37). Then Problem 18 has at least one solution (u, β) ∈ W 1,2(0, T ;
V ) × W 1,2(0, T ;L2(ΓC)).

Proof. The proof is based on Theorem 16. We consider the spaces X = L2(ΓC ;Rd), Y = L2(ΓC), and
define operators A, B : V → V ∗ by

〈Au,v〉V ∗×V =
〈
C (ε(u)), ε(v)

〉

H for u,v ∈ V, (41)

〈Bu,v〉V ∗×V =
〈
E (ε(u)), ε(v)

〉

H for u,v ∈ V, (42)

respectively. For u ∈ X and β ∈ Y , denote the function J : Y × X → R by

J(β,u) =
∫

ΓC

(jν(x, β, uν) + jτ (x, β,uτ )) dΓ. (43)

Combining hypotheses (34)(e), (35)(e) and [33, Corollary 4.15(vii)], we deduce that J(β, ·) or −J(β, ·) is
regular on X for all β ∈ Y . On the other hand, [33, Lemma 3.39(3) and Corollary 4.15(vi)] imply

J0(β,u) =
∫

ΓC

(
j0
ν(x, β, uν) + j0

τ (x, β,uτ )
)
dΓ, (44)

∂J(β,u) =
∫

ΓC

(
∂jν(x, β, uν) + ∂jτ (x, β,uτ )

)
dΓ (45)

for all β ∈ Y and u ∈ X. Moreover, let M = γ and g : (0, T ) × X × Y → Y be defined by

g(t,u, β)(x) = F (x, t, β(x),u(x)) for all β ∈ Y, u ∈ X a.e. x ∈ ΓC , (46)

where γ : V → X is the trace operator.
Using these notation, Problem 18 can be reformulated as the following abstract fractional differential

hemivariational inequality: find u ∈ W 1,2(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

〈A(C
0 Dα

t u(t)),v〉 + 〈B(u(t)),v〉 + J0(β(t),Mu(t);Mv) ≥ 〈f(t),v〉
for all v ∈ V, a.e. t ∈ (0, T ),

β′(t) = g(t,u(t), β(t)) for a.e. t ∈ (0, T ),

β(0) = β0,

u(0) = u0 in Ω.

(47)

We will prove the existence of solution to problem (47) by using Theorem 16. To this end, we denote
w(t) = C

0 Dα
t u(t) for a.e. t ∈ (0, T ). Applying Proposition 3(b), we obtain

u(t) = 0I
α
t w(t) + u0 for a.e. t ∈ (0, T ). (48)
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Thus, problem (47) can be reformulated as follows: find w ∈ L1(0, T ;V ) and β ∈ W 1,2(0, T ;Y ) such that
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈Aw(t) + B(u0 + 0I
α
t w(t)),v〉 + J0(M(u0 + 0I

α
t w(t));Mv) ≥ 〈f(t),v〉

for all v ∈ V, a.e. t ∈ (0, T )

β′(t) = g(t,M(u0 + 0I
α
t w(t)), β(t)) for a.e. t ∈ (0, T )

β(0) = β0.

(49)

This means that (u, β) ∈ W 1,2(0, T ;V ) × W 1,2(0, T ;Y ) is a solution to problem (47) if and only if
(w, β) ∈ L1(0, T ;V ) × W 1,2(0, T ;Y ) solves problem (49).

To this end, we will verify that hypotheses H(A), H(B), H(f), H(J), H(g) and H(M) of Theorem 16
are satisfied. Obviously, from hypothesis (32), we can see that the operator A, see (41), is coercive
with constant ma and A ∈ L(V, V ∗), i.e., H(A) holds. Note that, since the elastic operator E satisfies
properties (33), this yields that B ∈ L(V, V ∗), i.e., H(B) is verified. Moreover, hypotheses (34) and
(35) combined with [33, Corollary 4.15(v)] imply that the conditions H(J)(i) and (ii) are satisfied with
cJ = max{√3meas(ΓC), 1}(cν + cτ ). The upper semicontinuity of jν and jτ , and Fatou’s lemma, see,
e.g., [33, Theorem 1.64], guarantee that the function (β,u) �→ J0(β,u;v) is also upper semicontinuous
from Y × X to R, for all v ∈ X. So, J has the property H(J)(iii). In addition, it follows from the
regularity hypothesis (36) that f satisfies H(f). From [12, Theorem 3.9.34], we infer that the trace
operator γ satisfies H(M). Finally, it is easy to verify that under hypothesis (37), operator g defined by
(46) satisfies all conditions in H(g).

Summing up, we have verified all hypotheses of Theorem 16. Therefore, applying this theorem, problem
(49) has a solution (w, β) ∈ L1(0, T ;V ) × W 1,2(0, T ;Y ). Hence, we deduce that (u, β) ∈ W 1,2(0, T ;V ) ×
W 1,2(0, T ;Y ) is a solution to problem (47), where u is defined by equality (48). Finally, we conclude that
(u, β) ∈ W 1,2(0, T ;V ) × W 1,2(0, T ;Y ) solves Problem 18. This completes the proof of the theorem. �

We say that a triple of functions (u,σ, β) which satisfies (22) and (40) is called a weak solution to
Problem 17. We conclude that, under assumptions of Theorem 19, Problem 17 has at least one weak
solution. Moreover, the weak solution has the following regularity

u ∈ W 1,2(0, T ;V ), σ ∈ L2(0, T ;L2(Ω,Sd)), β ∈ W 1,2(0, T ;Y ), and Div σ ∈ V∗,

because w ∈ V and u(t) = 0I
α
t w(t) + u0 for a.e. t ∈ (0, T ), which is such that (49) holds.

Note that if the nonconvex potential jν and tangential function jτ are independent of the adhesion
field β, then Problem 17 reduces to the fractional viscoelastic contact problem, which was studied by
Zeng and Migórski [54]. On the other hand, if α = 1 in Problem 17, then it reduces to the following
viscoelastic contact problem with classical Kelvin–Voigt constitutive law and adhesion.

Problem 20. Find a displacement field u : Q → R
d, a stress field σ : Q → S

d and a bonding field β : ΣC →
[0, 1] such that

σ(t) = C (ε(u′(t))) + E (ε(u(t))) in Q,

Div σ(t) + f0(t) = 0 in Q,

u(t) = 0 on ΣD,

σ(t)ν = fN (t) on ΣN ,

− σν(t) ∈ ∂jν(β(t), uν(t)) on ΣC ,

− στ (t) ∈ ∂jτ (β(t),uτ (t)) on ΣC ,

β′(t) = F (t,u(t), β(t)) on ΣC ,

β(0) = β0 on ΓC ,

u(0) = u0 in Ω.
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Clearly, Problem 20 has the following variational formulation, which is a classical differential hemi-
variational inequality.

Problem 21. Find u ∈ W 1,2(0, T ;V ) and β ∈ W 1,2(0, T ;L2(ΓC)) such that
〈
C (ε(u′(t))), ε(v)

〉

H +
〈
E (ε(u(t))), ε(v)

〉

H

+
∫

ΓC

(
j0
ν(uν(t); vν) + j0

τ (uτ (t);vτ )
)

dΓ ≥ 〈f(t),v〉

for all v ∈ V, a.e. t ∈ (0, T ),

β′(t) = F (t,u(t), β(t)) on ΣC .

β(0) = β0 in ΓC .

u(0) = u0 in Ω.

As a consequence of Theorem 19, we conclude the following result.

Corollary 22. Assume that hypotheses (32)–(37) hold. Then Problem 21 has a solution (u, β) ∈ W 1,2(0, T ;
V ) × W 1,2(0, T ;L2(ΓC)).

Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International Li-
cense (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in
any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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[11] Denkowski, Z., Migórski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Aca-

demic/Plenum Publishers, Boston, Dordrecht, London, New York (2003)
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