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The natural operators
of general affine connections

into general affine connections

Abstract. We reduce the problem of describing allMfm-natural operators
transforming general affine connections on m-manifolds into general affine
ones to the known description of all GL(Rm)-invariant maps Rm∗ ⊗Rm →
⊗kRm∗ ⊗⊗kRm for k = 1, 3.

Introduction. All manifolds considered in this paper are assumed to be
finite dimensional, without boundaries, second countable, Hausdorff and
smooth (of class C∞). Maps between manifolds are assumed to be smooth
(of class C∞). The category of m-dimensional manifolds and their embed-
dings is denoted by Mfm.

A classical linear connection on a manifold M is a right invariant connec-
tion Γ on the principal fiber bundle LM of linear frames of M . It can be
considered equivalently as the corresponding R-bilinear map ∇ : X (M) ×
X (M)→ X (M) such that ∇fXY = f∇XY and ∇XfY = X(f)Y + f∇XY
for any map f : M → R and any vector fields X,Y ∈ X (M) on M , see [2].

A general affine connection on M is a right invariant connection Γ on
the principal fiber bundle AM of affine frames of M . It can be equivalently
considered as the corresponding pair (∇,K) consisting of a classical linear
connection ∇ on M and a tensor field K of type (1, 1) on M , see [2].

The general concept of natural operators can be found in [3].
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In the present note, we study the problem of finding all Mfm-natural
operators B : Qgen-af  Qgen-af transforming general affine connections
(∇,K) on m-manifolds M into general affine connections B(∇,K) on M .

Given an Mfm-natural operator B : Qgen-af  Qgen-af, we define an
Mfm-natural operator ∆ : Qgen-af  (⊗2T ∗ ⊗ T )⊕ (T ∗ ⊗ T ) by

B(∇,K) = (∇,K) + ∆(∇,K)

for all general affine connections (∇,K) on m-manifolds M , and vice versa.
So, to find all Mfm-natural operators B : Qgen-af  Qgen-af it is sufficient
to find all Mfm-natural operators ∆ : Qgen-af  (⊗2T ∗ ⊗ T ) ⊕ (T ∗ ⊗ T )
transforming general affine connections (∇,K) on m-manifolds M into pairs
∆(∇,K) = (∆1(∇,K),∆2(∇,K)) of tensor fields ∆1(∇,K) of type (1, 2)
and ∆2(∇,K) of type (1, 1) on M .

In the present note, we prove that the above problem of finding allMfm-
natural operators B : Qgen-af  Qgen-af (or ∆ : Qgen-af  (⊗2T ∗ ⊗ T ) ⊕
(T ∗ ⊗ T )) can be reduced to the one of describing all GL(Rm)-invariant
maps Rm∗ ⊗Rm → ⊗kRm∗ ⊗⊗kRm for k = 1, 3.

This “reduction” is satisfactory, because the GL(Rm)-invariant maps
Rm∗ ⊗Rm → ⊗kRm∗ ⊗⊗kRm for k = 1, 2, 3 are described in [1].

1. The crucial lemma. We prove the following lemma.

Lemma 1. There is the bijection between the set C of all Mfm-natural
operators ∆ : Qgen-af  (⊗2T ∗⊗T )⊕(T ∗⊗T ) and the set D of all GL(Rm)-
invariant maps (

∧2Rm∗⊗Rm)⊕(Rm∗⊗Rm)⊕(⊗2Rm∗⊗Rm)→ (⊗2Rm∗⊗
Rm)⊕ (Rm∗ ⊗Rm).

Proof. We define a map Φ : C → D as follows.
Any ∆ ∈ C is determined by the values

∆(∇,K)(x) = (∆1(∇,K)(x),∆2(∇,K)(x))

∈ (⊗2T ∗xM ⊗ TxM)⊕ (T ∗xM ⊗ TxM)

for all m-manifolds M , all linear connections ∇ on M , all tensor fields K
of type (1, 1) on M and all x ∈ M . Because of the Mfm-invariance of ∆,
we may assume that M = Rm, x = 0. We can even assume that idRm is
∇-normal with center 0 (then ∇(0) ∈

∧2Rm∗⊗Rm because the Christoffel
symbols ∇i

jk of ∇ satisfy ∇i
jk(0) +∇i

kj(0) = 0). Then using the invariance
of ∆ with respect to the homotheties at = t idRm for t > 0, we obtain the
homogeneity condition

∆((at)∗∇, (at)∗K)(0) = (t∆1(∇,K)(0),∆2(∇,K)(0)) .

Because of the homogeneous function theorem [3], this type of the homo-
geneity implies that ∆(∇,K)(0) depends on ∇(0) and j10K (only). Let
(Λ, τ0, τ1) ∈ (

∧2Rm∗⊗Rm)⊕ (Rm∗⊗Rm)⊕ (⊗2Rm∗⊗Rm)=̃(
∧2 T ∗0R

m⊗
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T0R
m)⊕ J1

0 (T ∗Rm ⊗ TRm), where =̃ is the usual GL(Rm)-invariant iden-
tification. We put

Φ(∆)(Λ, τ0, τ1) := ∆(∇,K)(0) ∈ (⊗2Rm∗ ⊗Rm)⊕ (Rm∗ ⊗Rm)

(modulo the usual GL(Rm)-invariant identification), where ∇ is the linear
connection on Rm such that the Christoffel symbols of ∇ with respect to
the chart idRm are constant maps and ∇(0) = ∇o(0)+Λ and ∇o is the usual
flat torsion free connection on Rm and K is the tensor field of type (1, 1)
on Rm such that the coefficients of K in the chart idRm are polynomials of
degree not more than 1 and j10K = (τ0, τ1).

Since ∆ is determined by Φ(∆), Φ is injective.
It remains to show that Φ is surjective. Let c : (

∧2Rm∗⊗Rm)⊕ (Rm∗⊗
Rm) ⊕ (⊗2Rm∗ ⊗ Rm) → (⊗2Rm∗ ⊗ Rm) ⊕ (Rm∗ ⊗ Rm) be a GL(Rm)-
invariant map (an element from D). Using the usual GL(Rm)-invariant
identification Rm = T0R

m, we have the GL(Rm)-invariant map

c : (
2∧
T ∗0R

m ⊗ T0Rm)⊕ (J1
0 (T ∗Rm ⊗ TRm))→

→ (⊗2T ∗0R
m ⊗ T0Rm)⊕ (T ∗0R

m ⊗ T0Rm) .

Let (∇,K) be a general connection on an m-manifold M . Using c, we
define a pair ∆c(∇,K) consisting of tensor fields ∆1

c(∇,K) of type (1, 2)
and ∆2

c(∇,K) of type (1, 1) on M as follows. Let x ∈ M . Consider a
normal coordinate system ϕ of ∇ with center x. Then (ϕ∗∇)0 ∈

∧2 T ∗0R
m⊗

T0R
m modulo the obvious GL(Rm)-invariant identification and j10(ϕ∗K) ∈

J1
0 (T ∗Rm ⊗ TRm). We put

(ϕ∗∆c(∇,K))0 := c((ϕ∗∇)0, j
1
0(ϕ∗K)) .

If ψ is another normal coordinate system of ∇ with center x, then ψ = η ◦ϕ
for a GL(Rm)-map η. Then (ψ∗∆c(∇,K))0 = (ϕ∗∆c(∆,K))0 because of
the GL(Rm)-invariance of c. That is why, the definition of ∆c(∇,K) is
correct. Thus we have the Mfm-natural operator ∆c : Qgen-af  (⊗2T ∗ ⊗
T )⊕ (T ∗ ⊗ T ). Clearly, Φ(∆c) = c. �

2. The main result. The main result of the note is the following “reduc-
tion” theorem.

Theorem 1. The problem of finding all Mfm-natural operators B : Qgen-af
 Qgen-af can be reduced to the one of describing all GL(Rm)-invariant
maps Rm∗ ⊗Rm → ⊗kRm∗ ⊗⊗kRm for k = 1, 3.

Proof. Any GL(Rm)-invariant map c : (
∧2Rm∗ ⊗Rm) ⊕ (Rm∗ ⊗Rm) ⊕

(⊗2Rm∗⊗Rm)→ (⊗2Rm∗⊗Rm)⊕ (Rm∗⊗Rm) is the system of GL(Rm)-
invariant maps

c1 : (

2∧
Rm∗ ⊗Rm)⊕ (Rm∗ ⊗Rm)⊕ (⊗2Rm∗ ⊗Rm)→ ⊗2Rm∗ ⊗Rm
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and

c2 : (

2∧
Rm∗ ⊗Rm)⊕ (Rm∗ ⊗Rm)⊕ (⊗2Rm∗ ⊗Rm)→ Rm∗ ⊗Rm .

Using the invariance of ci with respect to the homotheties at = tidRm

for t > 0, we obtain the respective homogeneity conditions. Then (by the
homogeneous function theorems) c1(Λ, τ0, τ1) is linear in Λ and τ1 and not
necessarily linear in τ0. Then c1 can be treated as the sum of GL(Rm)-linear
maps

c′1 : Rm∗ ⊗Rm → (

2∧
Rm∗ ⊗Rm)∗ ⊗ (⊗2Rm∗ ⊗Rm) ⊂ ⊗3Rm∗ ⊗⊗3Rm

and

c′′1 : Rm∗ ⊗Rm → (⊗2Rm∗ ⊗Rm)∗ ⊗ (⊗2Rm∗ ⊗Rm)=̃⊗3 Rm∗ ⊗⊗3Rm .

By the same arguments, c2(Λ, τ0, τ1) is independent of Λ and τ1. Then
c2 : Rm∗ ⊗Rm → Rm∗ ⊗Rm is a GL(Rm)-invariant map.

Now, Theorem 1 is an immediate consequence of Lemma 1. �
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[3] Kolář, I., Michor, P. W., Slovák, J., Natural Operations in Differential Geometry,
Springer-Verlag, Berlin, 1993.

Jan Kurek Włodzimierz M. Mikulski
Institute of Mathematics Institute of Mathematics
Maria Curie-Skłodowska University Jagiellonian University
pl. M. Curie-Skłodowskiej 1 ul. S. Łojasiewicza 6
Lublin Cracow
Poland Poland
e-mail: kurek@hektor.umcs.lublin.pl e-mail: Wlodzimierz.Mikulski@im.uj.edu.pl

Received December 31, 2016


