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MAKING TRIANGLES COLORFUL*

Jean Cardinal,  Kolja Knauer^  P iotr M icek} and Torsten Ueckerdfl

A b s t r a c t .  We prove th a t for any finite point set P  in the plane, a triangle T , and a 
positive integer k, there exists a coloring of P  w ith k colors such th a t any hom othetic copy 
of T  containing at least 144k8 points of P  contains a t least one of each color. This is the first 
polynomial bound for range spaces induced by hom othetic polygons. The only previously 
known bound for this problem applies to  the more general case of octants in R 3, but is 
doubly exponential.

1 Introduction

Covering and packing problems are ubiquitous in discrete geometry. In  this context, the 
notion of e-nets captures the idea of finding a small bu t representative sample of a da ta  
set (see for instance C hapter 10 in M atousek’s lectures [14]). Given a set system, or range 
space, on n  elements, an e-net for this system is a subset of the elements such th a t any set, 
or range, containing at least en elements contains at least one element of the subset.

In this paper, we are interested in coloring the elements so th a t any range containing 
sufficiently m any  elements contains a t least one element o f each color. Hence instead of 
finding a single subset of representative elements, we wish to  partition  the elements into 
representative classes.

For a given class of range spaces, we define the function p(k)  as the minimum number 
p such th a t the following holds: the elements of every range space in th a t class can be colored 
with k colors so th a t any range containing at least p elements contains a t least one of each 
color. It is not difficult to  show th a t if p(k) =  O(k)  for a class of range spaces, then this 
class adm its e-nets of size O (1/e).

We are interested in range spaces defined by a collection B of subsets of R d. In what 
follows, we are mainly concerned w ith the case where B is a collection of convex bodies, 
th a t is, compact convex subsets of Rd. For given B we obtain a range space whose ground 
set is a (countable or finite) point set P  ç  R d by considering all subsets of P  formed by

‘ Research supported by the ESF EUROCORES programme EuroGIGA, CRP ComPoSe 
(h ttp ://w w w .eu ro g ig a -co m p o se .eu ), and GraDR (h t t p : / /k a m .m f f .c u n i .c z /g r a d r /). Jean Cardinal
is supported by the F .R .S-FN R S as grant convention no. R  70.01.11F w ithin the ComPoSe project. Kolja 
Knauer is supported by D FG  grant F E -340/8-1 as part of the project GraDR. Piotr Micek is supported  
by the M inistry of Science and Higher Education of Poland as grant no. 884/N -E S F -E uroG IG A /10/2011/0  
w ithin the GraDR project.

U niversité libre de Bruxelles, Belgium,, jcard in @ u lb .ac .b e  
*Technische U niversität B erlin , G erm any, knauer@ m ath .tu -berlin .de  
§ Jagiellonian U niversity, Krakow, Poland, P io tr .M ic e k @ tc s .u j .e d u .p l  
^K arlsruhe In s titu te  o f Technology, G erm any, T orsten .U eck erd t@ k it.ed u

JoCG 4(1), 240-246, 2013 240

http://jocg.org/
http://www.eurogiga-compose.eu
http://kam.mff.cuni.cz/gradr/
mailto:jcardin@ulb.ac.be
mailto:knauer@math.tu-berlin.de
mailto:Piotr.Micek@tcs.uj.edu.pl
mailto:Torsten.Ueckerdt@kit.edu


Journal of Computational Geometry j o cg .o r g

intersecting P  with a member of B. This construction yields so-called prim al range spaces 
induced by B. For instance, if P  is a set of points in the plane and B the set of all disks, then 
the ranges are all possible intersections of P  w ith a disk. Such range spaces and their e-nets 
appear frequently in discrete geometry and in applications such as sensor networks [8].

One can also consider dual range spaces induced by B, where the ground set is a 
(countable or finite) subcollection B' of B, and the ranges are all subsets X  of B' such th a t 
there exists some p e  R d w ith X  =  {B e B ' | p e  B } . For instance, if B' is a set of disks in 
the plane, then  the ranges are all m aximal sets of disks containing a common point.

In general, those are also referred to  as (primal and dual) geometric hypergraphs.

In the case of dual range spaces induced by a collection B of objects, the problem of 
bounding p(k)  is known as the covering decomposition problem o f B. In this setting, we are 
given a subcollection of these objects, and we wish to  partition  them  into k color classes, 
so th a t whenever a point is contained in sufficiently many objects of the initial collection, 
it is contained in a t least one object of each class.

We prove a polynomial upper bound on p(k) for prim al range spaces induced by 
hom othetic triangles in the plane.

1.1 Previous Work

These questions were first studied by Janos Pach in the early eighties [15]. An account 
of early related results and conjectures can be found in C hapter 2 of the survey on open 
problems in discrete geometry by Brass, Moser, and Pach [4].

In the past five years, trem endous progress has been made in this area, for range 
spaces induced by various families of convex bodies. One of the most striking achievements 
is the recent proof th a t p(k) =  O(k)  for translates of convex polygons, the culm ination 
of a series of interm ediate results for various special cases. We rem ark th a t convex bod­
ies are considered because p(k) =  œ  for range spaces induced by translates of concave 
polygons [16]. We refer the reader to  Table 1 for a sum m ary of the known bounds.

The specific case of translates of a triangle w ith k =  2 was tackled by Tardos and 
T oth  in 2007 [21]. They proved th a t every point set can be colored red and blue so th a t 
every transla te  of a given triangle containing at least 43 points contains a t least one red 
and one blue. We generalize this result in two ways: we consider homothetic  triangles, and 
an arb itrary  num ber of colors.

The only previously known results applying to  our problem are due to  Keszegh and 
Palvölgyi [11, 12]. They actually apply to  the more general case of translates of (say) the 
positive octan t in a cartesian representation of R 3. The special case of triangles hom othetic 
to  the triangle with vertices (0 , 0), (1, 0) and (0 , 1) occurs when all points lie on a plane 
orthogonal to  the vector (1 ,1 ,1 ). The bound th a t was proven for arb itrary  k is of the order

nfc
of 122 , and is most probably far from being tight.
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Range spaces primal dual

halfplanes p(k) =  2k -  1 [2 , 10, 20] P(2) =  3 [7] 
p(k)  <  3k -  2 [2 , 20]

translates of 
a convex polygon p(k) =  O(k)  [21, 19, 17, 1 , 9]

translates of 
an octant in R 3

p(2) <  12 [11] 
p(k)  <  122k [12]

unit disks to [18]

bottom less rectangles p(2) =  4 [10]
1.6k <  p(k)  <  3k -  2 [3]

p(2) =  3 [10] 
p(k) <  122k [12] (from octants in R 3)

axis-aligned
rectangles to [6] to [16]

disks and 
halfspaces in R 3 to [16] to [18]

Table 1: Known results for various families of range spaces. For range spaces induced by 
translates of a set, the prim al problem is the same as the dual. W hen more than  one 
reference is given, they correspond to  successive improvements, bu t only the best known 
bound is indicated. The symbol œ  indicates th a t p(k) does not exist.

1.2 Our Result

T h e o re m  1.1. Given a finite point set P  ç  R 2, a triangle T  ç  R 2 and a positive integer 
k, there exists a coloring o f P  with k colors such that any homothetic copy o f T  containing 
at least 144 ■ k8 points o f P  contains at least one o f each color.

The proof is elementary, and builds on the previous work by Keszegh and Palvölgyi [11, 
12]. The degree of the polynomial depends on p(2). Hence any improvement on p(2) would 
yield a polynomial improvement in the bound. For the same reason, it can be shown th a t 
the same coloring m ethod cannot be used to  prove any upper bound be tte r than  O( k 4) (as 
p(2) ^  4).

2 Proof

Let B be the collection of all hom othetic copies of a fixed closed triangle T  in the plane. 
We consider the class of primal range spaces induced by B. From now on we denote by p(k)  
the minimum p such th a t every finite set of points in the plane can be colored with k colors 
so th a t any hom othetic copy of T  containing at least p points contains a t least one point of 
each color.

L e m m a  2.1. I f  p(2) ^  c, fo r  some constant c, then  p(2k) ^  c2p(k),  fo r  all k  ^  2.

Proof. I t suffices to  prove the lemma for any fixed triangle T  and then  argue for all others 
using an affine transform ation of the plane. Let T  be the triangle with vertices (0,0), (1, 0) 
and (0 , 1).
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Consider a finite point set P  and a k-coloring 0 : P  ^  {1, . . .  ,k} such th a t any 
hom othetic copy of T  containing at least p(k) points contains one of each color. Note th a t 
p(k) <  œ  [12]. We suppose w ithout loss of generality th a t no two points of P  lie on a line 
of slope - 1, otherwise we can slightly pertu rb  the points, and a suitable coloring for the 
perturbed  version will also work for P .

We now describe a simple procedure to  double the num ber of colors. For 1 ^  i ^  k 
let Pi =  0 -1  (i) th a t is the set of points w ith color i. Provided p(2) ^  c there is a 2-coloring 
0 i : P i ^  {i', i''} of P i such th a t for any hom othetic copy T ' of T  containing at least c points 
of P i , T ' contains a t least one point of each color. We define 0 ' to  be the disjoint union of 
all 0i, and claim th a t 0 ' is a 2k-coloring of P  such th a t for any hom othetic copy T ' of T  
containing at least c2p(k) points, T ' contains a t least one point of each of the 2k colors.

Consider a hom othetic copy T ' of a triangle T  containing at least c2p(k) points from 
P , and in order to  get a contradiction suppose th a t one of the 2k colors used by 0 ' is missing 
in T '. Let i ' be this color. Note th a t if there are a t least c points in T ' w ith color i then  i' 
and i'' m ust be present in T ', from the correctness of the 2-coloring 0 i . Hence we conclude 
th a t there are less th an  c points in T ' w ith color i.

Order the points in T ' n  P  =  {p1;p2, . . . } in such a way th a t the sum of their x- and 
y-coordinates is non-decreasing. Hence the order corresponds to  a sweep of the points in 
T ' n  P  by a line of slope - 1 .  By the pigeonhole principle, since there are less th an  c points 
colored w ith i, there m ust exist a subsequence Q =  (p j,p j + 1, . . .  ,p j +^-1 ) of points of color 
distinct from i, of length I  :=  c2p (k )/c  =  cp(k).

Figure 1: Illustration of the proof of Lemma 2.1.

Let R :=  P i n  {p1;p2, . . .  ,p j - 1} be the set of points of color i th a t come before Q in 
the sweep order. By assum ption, we have |R| <  c. Hence the points of Q can be covered 
with c translates of the first quadrant, such th a t none of them  intersects R; see Figure 1. 
For example, it is enough to  consider all inclusion-wise maximal quadrants w ith apex in 
T ' th a t avoid points in R. Applying the pigeonhole principle a second time, one of these 
quadrants m ust contain at least |Q |/c  =  cp(k)/c  =  p(k) points, none of which is colored i.
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This quadrant, together w ith the sweepline containing the last point pj+£-1  of Q, forms a 
triangle th a t is hom othetic to  T , contains a t least p(k) points, none of which has color i. 
This is a contradiction w ith the correctness of the initial k-coloring 0. □

Proof o f Theorem 1.1. It was shown by Keszegh and Palvölgyi th a t p(2) ^  12 [11]. Hence 
it remains to  solve the recurrence of the previous lemma with c =  12. We look for an upper 
bound on p(k) satisfying p(2k) ^  144 ■ p(k) for any positive integer k, and p(2) ^  12. This 
yields p (2*) ^  144* for any positive integer i, and p(k) ^  144rio§2 fcl <  144■ k8 for any positive 
integer k. □

3 Open Problems

The only lower bounds on p(k) the authors are aware of is the bound p(k) ^  1.6k for bo t­
tomless rectangles [3] (which improves the bound p(k) ^  4k/3 for translates of squares [17]) 
and the tight bound p(k) ^  2k — 1 for halfplanes [20].

No bound at all is known for the primal range space induced by axis-aligned squares: 
does there exist a function p(k) such th a t for any point set P  there is a k-coloring of P  such 
th a t any axis-aligned square containing at least p(k) points of P  contains a t least one point 
of each color?

We rem ark th a t after this paper has been subm itted the bound of 144k8 was im­
proved to  O (k6) even in the more general setting of translates of octants in R3 [5], and also
by Keszegh and Palvölgyi [13] to  O (k4'58) again only in the case of hom othetic triangles. 
B oth results rely on the same idea as the one in Lemma 2.1, namely defining a 2k-coloring 
from a k-coloring by splitting each color class into two.
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