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ASYMPTOTIC DENSITY AS A METHOD OF
EXPRESSING QUANTITATIVE RELATIONS IN

INTUITIONISTIC LOGIC

A b s t r a c t. Our efforts in this work are mainly directed towards the

statistical properties of tautologies and non-tautologies in intuitionistic

logic (which is equivalent to research in typed lambda calculus because

of the Curry-Howard isomorphism, see [1]). This article is a part of

my master’s thesis, which I defended at the Computer Science Depart-

ment of Jagiellonian University in 2000. The inspiration for the thesis

were the scientific works of the supervisor of my thesis dr hab. Marek

Zaionc. In his [2] and [3] he dealt with typed lambda calculus consid-

ered over a finite number of ground types. His aim was to study the

properties of types according to their length, defined as the number of

occurrences of ground type variables in a type.

The goal here is quite similar, though we start from a different

definition of the length of a type. In this work the complexity mea-

sure function (the ”length” of a type) is defined as the height of its

constructing tree. As we show the statistical behaviour of the type de-

pends vitaly on the definition of its length. In Section 2 we prove that

the asymptotic probability (defined precisely there) that a random one-

variable formula is valid in intuitionistic logic (with implication only)

is exactly 1, while by the linear definition of the length of a type (as

discussed in [2] and [3]) this probability is equal to 1
2 +

√
5

10 .

In Section 3 we shall be concerned with formulas their correspond-

ing types consist of more than one ground type. We define a subset
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of tautologies (called simple tautologies). Then we show that for each
number k of ground type variables, and for each number n > 1, the
ratio of types corresponding to this class of length n to all types of the
same length n expressed as a fraction is always positive and at the same
time bounded by 1

k . We show also that the similarly defined ratio of
all types representing tautologies to all types expressed as a fraction is
greater than 1

k , which implies that we have noticeably more (in terms
of asymptotic density which is defined in Section 1) tautologies than
simple tautologies. However, it does not give us precise information
about all tautologies (as was the case in Section 2). Later on in Sec-
tion 3 we shall be occupied with a subset of non-tautologies whose
asymptotic density is positive by the linear definition of the length of
a type, and moreover, this density tends to 1 as k tends to infinity. We
show that by our double exponential definition of the length of a type
this density equals 0.

In the last chapter we state some conjectures, which seem to hold
but are not contained in this work.

1. Preliminary remarks

Although the considerations here touch on only types in typed lambda
calculus, a similar method can be used to discuss the statistical properties
of other finite mathematical objects. The idea is to apply a complexity
measure function f arising from a given poset (partially ordered set) B
of finite objects (not necessarily restricted in any other way) to positive
natural numbers (meaning that b ≺ b′ is a ”subject”). The natural inter-
pretation of f(b) is a complexity of the object b ∈ B.

f : B → N \ {Ø}
Usually we demand that such a function satisfy some assumptions, such as

1. ∀ x |f−1(x)| < ω

2. µ ≺ τ ⇒ f(µ) < f(τ), ≺ - a partial order relation on B
3. x < y ⇒ |f−1(x)| < |f−1(y)|

which is only formalization of some very intuitive expectations.
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Then we define an equivalence relation on B

∀ bi, bj ∈ B [bi] = [bj ] ⇔ f(bi) = f(bj)

Such a relation partitions set B into ℵ0 distinct equivalence classes. We
formulate then properties of the elements of this set according to their
belonging to particular classes. Using this method we can state the statis-
tical properties of infinite sets, while concerning actually only finite subsets
(we assumed all equivalence classes to be finite). Our complexity measure
function gives us the opportunity to estimate the asymptotic probability of
choosing an element fulfilling concrete assumptions from the whole set. In
other words, we can estimate the asymptotic density of a specified group
of elements in the set of all elements.

Here we shall apply the described method to determine the asymptotic
density of some concrete subsets of types in typed lambda calculus.

We begin by introducing a definition of length of a type.

Definition 1.0.1. The length of a type is defined as follows
|a| = 1
|τ → µ| = max(|τ |, |µ|) + 1

It can easily be seen that a length so defined is in fact the height of the
constructing tree of a given type.

Definition 1.0.2. The number of elements in a set A that are of length
n is denoted by An.

Definition 1.0.3. The asymptotic density of a set A in a set B is

dB(A) = lim inf
n→∞

An

Bn

If the sequence An
Bn

has a limit, we say that A has a natural density in a set
B, dB(A).

We will deal here only with the special case where B is the set of all
formulas in intuitionistic logic with implication (over a fixed number k of
ground propositional variables). Thus we will omit it while talking about
density, and later on the asymptotic density of a set A will mean the asymp-
totic density of this set A in the set of all formulas (built from implications
and the following from a context number k of ground propositional vari-
ables).
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The following lemma will be of great importance. It tells us that we
can investigate the partial sums of the sequences An and Bn(

∑n
i=1 Ai and∑n

i=1 Bi respectively) when concerned with the asymptotic density of a
given set A.

Lemma 1.0.1. Let An and Bn be given sequences of real numbers.
Let us denote

an =
n∑

i=1

Ai

bn =
n∑

i=1

Bi

Suppose that

1. limn→∞ an
bn

exists or limn→∞ An
Bn

exists

2. limn→∞ an
an−1

= ∞

3. limn→∞ bn
bn−1

= ∞
Then

lim
n→∞

An

Bn
= lim

n→∞
an

bn

Proof. Let us assume that limn→∞ an
bn

exists. We have

lim
n→∞

an

bn
= lim

n→∞

1
bn

1
an

= lim
n→∞

bn−bn−1

bn
(an − an−1)

an−an−1

an
(bn − bn−1)

= lim
n→∞

an − an−1

bn − bn−1

= lim
n→∞

An

Bn

If we assumed only the existence of the limit limn→∞ An
Bn

we would follow
our identities in the reverse order. However, as we see, our calculations
show that the existence of one of the limits implies the existence of the
other. �

2. Counting one-variable types

In this chapter we shall prove that there exists a natural asymptotic density
of one-variable tautologies (considered in intuitionistic logic with implica-
tion only) and that the density is equal to 1. We begin with a definition of
the length of a type.
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Lemma 2.0.2. The number of different types of length n is given by

F1 = 1

F2 = 1

Fn = 2xn−2Fn−1 + F 2
n−1 for n > 2

where

xn =
n∑

i=1

Fi

Proof. This lemma is a special case of Lemma 3.1.1. �

Let us look at the values of Fn and xn for a few first n’s

n Fn xn

1 1 1
2 1 2
3 3 5
4 21 26
5 651 677
6 457653 458330
7 210065930571 210066388901

Lemma 2.0.3.

lim
n→∞

Fn+1

Fn
= ∞

Proof. Since

Fn+1

Fn
= 2xn−1 + Fn ⇒ Fn+1

Fn
≥ Fn + Fn−1 (by Lemma 2.0.2)

it follows
lim

n→∞
Fn+1

Fn
= ∞

�

Definition 2.0.4. By numbers Nn and Tn we mean the number of
non-tautologies (which correspond to non-inhabited types) and tautolo-
gies (which correspond to inhabited types) in intuitionistic logic with one
propositional variable and implication only, respectively of length n.
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It is well-known that intuitionistic tautologies with one propositional
variable and implication only are simply classic provable formulas ([2]).
Hence the following lemma holds.

Lemma 2.0.4. τ → µ is a non-tautology ⇔ τ is a tautology and µ is
not a tautology.

Proof. A proof of this lemma can be found in [2], [3]. �

We will need Lemma 2.0.4 to state the following recurrence identities

Lemma 2.0.5. Numbers Nn and Tn are given by the formulas

N1 = 1 ; Nn = Tn−1

n−1∑
i=1

Ni + Nn−1

n−1∑
i=1

Ti − Nn−1Tn−1 for n ≥ 2

T1 = 0 ; Tn = Fn − Tn−1

n−1∑
i=1

Ni − Nn−1

n−1∑
i=1

Ti + Nn−1Tn−1 for n ≥ 2

Proof. This is a consequence of Lemma 2.0.4. Every type τ of length
n has the form τ1 → τ2, where at least one of the terms τi has the length
n-1 and neither of the lengths is greater than n-1. We have 3 disjoint cases
(see Lemma 3.1.1)

1. |τ1| = n − 1 and |τ2| < n − 1 - we have Tn−1
∑n−2

i=1 Ni such types

2. |τ1| < n − 1 and |τ2| = n − 1 - we have
∑n−2

i=1 TiNn−1 such types

3. |τ1| = n − 1 and |τ2| = n − 1 - we have Nn−1Tn−1 such types

Hence we have

Nn = Tn−1

n−2∑
i=1

Ni + Nn−1

n−2∑
i=1

Ti + Nn−1Tn−1

= Tn−1

n−1∑
i=1

Ni + Nn−1

n−1∑
i=1

Ti − Nn−1Tn−1

�
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Below we present the list of numbers of tautologies ( Tn ), non-tautologies
( Nn ) and all ( Fn ) formulas with the fractions of Tn

Fn
for the first few n’s.

n Tn Nn Fn
Tn
Fn

1 0 1 1 0.0000
2 1 0 1 1.0000
3 2 1 3 0.6666
4 16 5 21 0.7619
5 524 127 651 0.8049
6 385024 72629 457653 0.8413
7 182010991712 28054938859 210065930571 0.8664
8 . . . 0.8843
9 . . . 0.8977

10 . . . 0.9081
11 . . . 0.9166
12 . . . 0.9235
13 . . . 0.9294
14 . . . 0.9344
15 . . . 0.9387
16 . . . 0.9424
17 . . . 0.9458
18 . . . 0.9487
19 . . . 0.9513
20 . . . 0.9537

We will now investigate partial sums of the sequences Tn and Nn, which
will allow us to find the natural asymptotic densities of tautologies and
non-tautologies (by Lemma 1.0.1). In some of the following lemmas we will
make use of a recurrence equation for xn, which can be found in Chapter 3,
Lemma 3.1.2, formulated for a more general case (for xk

n).

Definition 2.0.5. By yn we mean the number of tautologies of a length
not greater than n. By zn we mean the number of nontautologies of a length
not greater than n.

yn =
n∑

i=1

Ti
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zn =
n∑

i=1

Ni

Lemma 2.0.6. Numbers xn, yn and zn are given by the recurrence
formulas

x1 = 1, xn = x2
n−1 + 1, n ≥ 2

y1 = 0, yn = xn − yn−1xn−1 + y2
n−1 − 1, n ≥ 2

z1 = 1, zn = yn−1zn−1 + 1, n ≥ 2

Proof. The formula for xn follows from Lemma 3.1.2.
For yn it holds

yn = xn − zn = xn − yn−1zn−1 − 1 = xn − yn−1xn−1 + y2
n−1 − 1, n ≥ 2

The recursion for zn is a simple consequence of Lemma 2.0.4. �
Lemma 2.0.7.

lim
n→∞

yn

xn
= 1

Proof. Firstly, we show that this limit exists.

1. The sequence yn

xn
is bounded by 0 and 1

2. We will show that the sequence is increasing. We have

yn

xn
=

xn − yn−1xn−1 + y2
n−1 − 1

xn

= 1 +
yn−1

x2
n−1 + 1

(yn−1 − xn−1) − 1
xn

> 1 +
yn−1

xn−1
(
yn−1

xn−1
− 1) − 1

xn

We need now only prove that

1 +
yn−1

xn−1
(
yn−1

xn−1
− 1) − 1

xn
− yn−1

xn−1
≥ 0, n ≥ 2

For a fixed n ≥ 2 let us define yn−1

xn−1
= a. We have to consider the

difference 1 + a(a − 2) − 1
xn

= (1 − a)2 − 1
xn

. But we can bound 1
xn

:

1
xn

=
1

x2
n−1 + 1

<
1

x2
n−1

≤ z2
n−1

x2
n−1

= (
zn−1

xn−1
)2 = (1 − a)2

This means that our inequality holds, so the sequence is increasing.
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An increasing and bounded sequence converges, hence the limit exists.
Let us note that

lim
n→∞

1
xn

= 0 since lim
n→∞xn = ∞

lim
n→∞

yn−1xn−1

xn
= lim

n→∞
yn−1xn−1

x2
n−1 + 1

= lim
n→∞

yn−1

xn−1
= lim

n→∞
yn

xn

(exists as already mentioned),

lim
n→∞

y2
n−1

xn
= lim

n→∞
y2

n−1

x2
n−1 + 1

= lim
n→∞

y2
n−1

x2
n−1

= ( lim
n→∞

yn

xn
)2 (exists).

We can conclude that

lim
n→∞

yn

xn
= lim

n→∞(1 − yn−1xn−1

xn
+

y2
n−1

xn
− 1

xn
) = 1 − lim

n→∞
yn

xn
+ ( lim

n→∞
yn

xn
)2

Let us define
lim

n→∞
yn

xn
= g

which satisfies the equation g = 1 − g + g2, which only solution is g=1.
Hence the lemma holds. �

Lemma 2.0.8.

lim
n→∞

xn

xn−1
= ∞ and lim

n→∞
yn

yn−1
= ∞

Proof. This follows directly from the recurrence formulas for xn and
yn. �

Theorem 1.

lim
n→∞

Tn

Fn
= 1

Proof. This theorem is just a simple consequence of Lemma 2.0.7,
Lemma 2.0.8 and Lemma 1.0.1. �

3. Types built from k type variables

3.1 All formulas

Let us introduce a definition similar to the definition of the number Fn

from the first paragraph
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Definition 3.1.1. By F k
n we mean the number of formulas which cor-

responding types are of length n and built from k ground variables. By T k
n

and Nk
n we mean the number of tautologies and non-tautologies, respec-

tively. This means that T k
n + Nk

n = F k
n .

Lemma 3.1.1. The number F k
n is given by the formula

F k
1 = k

F k
n = 2 ∗ (

n−2∑
i=1

F k
i ) ∗ F k

n−1 + (F k
n−1)

2 for n ≥ 2

Proof. For n = 1 the lemma holds - the only types of length 1 are
ground variables and we have k such variables. Let us consider a composite
type of the form τ → µ. This type can have length n in 3 disjoint cases

1. |τ | = n − 1 and |µ| < n − 1 - we have F k
n−1

∑n−2
i=1 F k

i such types

2. |τ | < n − 1 and |µ| = n − 1 - we have
∑n−2

i=1 F k
i F k

n−1 such types

3. |τ | = n − 1 and |µ| = n − 1 - we have (F k
n−1)

2 such types

Hence the lemma holds. �

Definition 3.1.2. The number xk
n is the number of all binary trees of

a height not exceeding n and whose leaves can be labeled with one of the
k variables. In terms of F k

n this means

xk
n =

n∑
i=1

F k
n

Lemma 3.1.2. The number xk
n is given by the formula

xk
n+1 = xk

n
2
+ k, n ≥ 1

Proof. xk
n+1 is the number of binary trees of a height not greater than

n+1. Let us consider one such tree and its left and right subtree. We
can choose the left or the right subtree in xk

n ways, which gives us xk
n

2

possibilities of constructing our chosen tree. The only remaining cases
are trees consisting only of one node roots (both its subtrees are empty).
Altogether, this gives us xk

n
2 + k trees of a height not exceeding n+1 (as

one node can be labeled with one of the k variables). �
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3.2 Tautologies

In this section we define a special subset of tautologies called simple tau-
tologies. Next we show that for each k a natural asymptotic density of this
subset exists and is positive (greater than 1

k+1), but at the same time it is
upper-bounded by 1

k .

Definition 3.2.1. By a simple tautology we mean a formula which
corresponding type has a form τ = τ1, . . . , τn → a for some ground type
a, such that there is at least one component τi identical with an a. Ev-
idently simple tautology is a tautology with the proof being a projection
λx1 . . . xn.xi. Let Gk

n be the number of types of length n built from k
ground type variables corresponding to simple tautologies.

Lemma 3.2.1. The number Gk
n is given by the formula

Gk
1 = 0 ; Gk

2 = k

Gk
n = (

n−2∑
i=2

Gk
i ) ∗ F k

n−1 + (
n−1∑
i=1

F k
i ) ∗ Gk

n−1 + (F k
n−1 − Gk

n−1) for n ≥ 3

Proof. For n=1 and for n=2 the lemma is obvious. Let us consider a
composite type of the form τ1 → τ2. The proof is based on the following
observation: τ1 → τ2 is simple if τ2 is simple. This simple tautology can
have length n in 3 disjoint cases

1. |τ1| = n − 1 and |τ2| < n − 1 - we have F k
n−1

∑n−2
i=2 Gk

i such simple
tautologies. The sum starts from i=2 because Gk

1 = 0.

2. |τ1| < n − 1 and |τ2| = n − 1 - we have
∑n−2

i=1 F k
i Gk

n−1 such simple
tautologies

3. |τ1| = n − 1 and |τ2| = n − 1 - we have F k
n−1 ∗ Gk

n−1 such simple
tautologies

The only other possible simple tautologies are if τ1 is the same ground type
that τ2 points to. Therefore for every type τ2 of length n-1 which corre-
sponding formula is not a simple tautology (there are exactly F k

n−1 −Gk
n−1

of such types) we have exactly one type representing a simple tautology
a → τ2 where a is the ground type which the type τ2 proves. Hence the
lemma holds. �
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Below you can find Gk
n for n=1,2,3,4 contrasted with the numbers F k

n

of all formulas with k variables.

Gk
1 = 0 F k

1 = k
Gk

2 = k F k
2 = k2

Gk
3 = k3 + 2k2 − k F k

3 = k4 + 2k3

Gk
4 = k7 + 4k6 + 5k5 + 4k4 F k

4 = k8 + 4k7 + 6k6 + 6k5 + 4k4

+ 2k3 − 3k2 + k
. .
. .
. .

Lemma 3.2.2.

∀m ≥ 1 ∃M ∀k ≥ M ∀n ≥ 2
m − 1
mk

F k
n ≤ Gk

n

∀k ∀n ≥ 2 Gk
n ≤ 1

k
F k

n

Proof. m is fixed, induction over n. For n=2 the lemma is obvious (see
the table above). Suppose the inequality holds for i=2,3, . . . ,n-1. We have

Gk
n = (

n−2∑
i=2

Gk
i ) ∗ F k

n−1 + (
n−1∑
i=1

F k
i ) ∗ Gk

n−1 + (F k
n−1 − Gk

n−1)

= (
n−2∑
i=2

Gk
i ) ∗ F k

n−1 + (
n−2∑
i=1

F k
i ) ∗ Gk

n−1 + F k
n−1 + (F k

n−1 − 1)Gk
n−1

≥ m − 1
mk

(
n−2∑
i=2

F k
i ) ∗ F k

n−1 + (
n−2∑
i=1

F k
i ) ∗ m − 1

mk
F k

n−1 + F k
n−1

+(F k
n−1 − 1) ∗ m − 1

mk
F k

n−1

=
m − 1
mk

(2 ∗ (
n−2∑
i=1

F k
i ) ∗ F k

n−1 + (F k
n−1)

2) − m − 1
mk

∗ k ∗ F k
n−1

+F k
n−1 −

m − 1
mk

F k
n−1

=
m − 1
mk

F k
n + F k

n−1(
1
m

− m − 1
mk

) ≥ m − 1
mk

F k
n

since 1
m−m−1

mk ≥ 0 for k ≥ m−1. That means that we can assign M = m−1.
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Upper bound

Gk
n = (

n−2∑
i=2

Gk
i ) ∗ F k

n−1 + (
n−1∑
i=1

F k
i ) ∗ Gk

n−1 + (F k
n−1 − Gk

n−1)

≤ 1
k
(
n−2∑
i=1

F k
i ) ∗ F k

n−1 −
1
k
F k

1 F k
n−1 +

1
k

(
n−2∑
i=1

F k
i ) ∗ F k

n−1

+
1
k
(F k

n−1)
2 + (F k

n−1 − Gk
n−1)

=
1
k
(2 ∗ (

n−2∑
i=1

F k
i ) ∗ F k

n−1 + (F k
n−1)

2) − Gk
n−1 =

1
k
F k

n − Gk
n−1 ≤ 1

k
F k

n

�

Definition 3.2.2. The number gk
n is the number of all simple tautolo-

gies over k ground variables of length not exceeding n.

gk
n =

n∑
i=1

Gk
i

Lemma 3.2.3.

gk
1 = 0

gk
n = xk

n−1g
k
n−1 + xk

n−1 − gk
n−1 for n ≥ 2 and all k

Proof. For n = 1 the lemma is obvious. Let us consider a composite
type of the form τ1 → τ2. The proof is based on the following observa-
tion: τ1 → τ2 is simple if τ2 is simple. We have xk

n−1g
k
n−1 of such simple

tautologies.
The only other possible simple tautologies are if τ1 is the same ground

type that τ2 points to. Therefore for every type τ2 of a length not exceeding
n-1 which does not correspond to a simple tautology (there are exactly
xk

n−1 − gk
n−1 of such types) we have exactly one type representing a simple

tautology a → τ2 where a is the ground type which the type τ2 proves.
Hence the lemma holds. �

Lemma 3.2.4.

lim
n→∞

gk
n

xk
n

exists
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Proof. 1. The sequence gk
n

xk
n

is bounded by 0 and 1

2. We will show that the sequence is increasing. Using Lemma 3.2.3 we
obtain

gk
n

xk
n

− gk
n−1

xk
n−1

=
xk

n−1g
k
n−1 + xk

n−1 − gk
n−1

xk
n

− gk
n−1

xk
n−1

=
xk

n−1
2
gk
n−1 + xk

n−1
2 − gk

n−1x
k
n−1 − (xk

n−1
2 + k)gk

n−1

(xk
n−1

2 + k)xk
n−1

=
xk

n−1
2 − gk

n−1x
k
n−1 − kgk

n−1

(xk
n−1

2 + k)xk
n−1

for n ≥ 2

Since (xk
n−1

2 + k)xk
n−1 is always positive, we have

gk
n

xk
n

− gk
n−1

xk
n−1

> 0 ⇔ (xk
n−1 − gk

n−1)x
k
n−1 > kgk

n−1

This last inequality holds since xk
1 − gk

1 = k, and not all types corre-
spond to simple tautologies. Thus the sequence is increasing.

An increasing and bounded sequence converges, hence the lemma holds.
�

Lemma 3.2.5.

lim
n→∞

Gk
n

F k
n

= lim
n→∞

gk
n

xk
n

for all k

Proof. The lemma follows from Lemma 1.0.1 (by Lemma 3.2.4 and
because limn→∞

gk
n

gk
n−1

= ∞ for all k). �

Lemma 3.2.6.

1
k + 1

< lim
n→∞

Gk
n

F k
n

≤ 1
k

Proof. The first inequality we obtain by Lemma 3.2.4 (as gk
2

xk
2

= k
k2+k

and the sequence gk
n

xk
n

is increasing).

The second inequality (limn→∞
Gk

n

F k
n
≤ 1

k ) follows from Lemma 3.2.2. �
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We will now show that not all tautologies are simple ones (in terms of
asymptotic density). We will define a subclass of tautologies (called almost-
simple tautologies), and will show that the ratio of the types corresponding
to these formulas to all types expressed as a fraction is greater than the
corresponding fraction of types representing simple tautologies.
All the properties that we stated for simple tautologies have their corre-
sponding formulations for almost-simple tautologies. Moreover, the proofs
are almost the same, so we do not include them separately here. We present
only the very lemmas.

Definition 3.2.3. By an almost-simple tautology we mean a formula
which corresponding type is a simple tautology or of the form

τ = τ1, . . . , τi, µ → µ

for some (not necessarily ground) type µ. It is obvious that an almost-
simple tautology is a tautology. Let Ḡk

n be the number of types representing
almost-simple tautologies of length n built from k ground type variables.

Lemma 3.2.7. The number Ḡk
n is given by the formula

Ḡk
1 = 0 ; Ḡk

2 = k

Ḡk
n = (

n−2∑
i=2

Ḡk
i ) ∗ F k

n−1 + (
n−1∑
i=1

F k
i ) ∗ Ḡk

n−1 + 2(F k
n−1 − Ḡk

n−1) for n ≥ 3

Definition 3.2.4. The number ḡk
n is the number of all almost-simple

tautologies over k ground variables of a length not exceeding n.

ḡk
n =

n∑
i=1

Ḡk
i

Lemma 3.2.8.

ḡk
1 = 0

ḡk
n = xk

n−1ḡ
k
n−1 + 2xk

n−1 − 2ḡk
n−1 − k for n ≥ 2 and all k

Lemma 3.2.9.

lim
n→∞

ḡk
n

xk
n

exists
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Lemma 3.2.10.

lim
n→∞

Ḡk
n

F k
n

= lim
n→∞

ḡk
n

xk
n

Theorem 2.

1
k + 1

< lim
n→∞

Gk
n

F k
n

≤ 1
k

< lim
n→∞

Ḡk
n

F k
n

for all k ≥ 3

Proof. The first two inequalities follow from Lemma 3.2.6.
To prove that 1

k < limn→∞
Ḡk

n

F k
n

we will consider the sequence ḡk
n

xk
n

which

has the same limit as the sequence Ḡk
n

F k
n
. This sequence is increasing (this

was proved in Lemma 3.2.9). Hence we have

lim
n→∞

ḡk
n

xk
n

≥ ḡk
3

xk
3

=
k3 + 3k2 − k

k4 + 2k3 + k2 + k
=

1
k

+
k2 − 2k − 1

k4 + 2k3 + k2 + k

Since k2 − 2k − 1 > 0 for k ≥ 3, the inequality holds. �

3.3 Non-tautologies

In this section we investigate a subgroup of non-tautologies (called simple
nontautologies), which was considerably large by the linear definition of
the length of a type (see [3]). We show, however, that though a natural
asymptotic density of this subset exists, it is equal to 0.
In this section we differentiate types according to the number of premises,
which is useful while discussing properties of simple non-tautologies.

Definition 3.3.1. By F k
n (p) we mean the number of types of length

n built from k ground type variables and having p premises - types which
are of the form: τ1 → . . . → τp → a where a is a ground type. Since the
numbers F k

n (p) describe disjoint sets of types for different p’s and since
there are no types of length n having more than n-1 premises for n ≥ 2 we
have

F k
n = F k

n (0) + . . . + F k
n (n − 1)

Lemma 3.3.1. The number F k
n (p) is given by recurrence (on p)

F k
1 (0) = k, F k

n (0) = 0 for n ≥ 2

F k
1 (1) = 0, F k

n (1) = kF k
n−1 for n ≥ 2
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F k
n (p) = (

n−1∑
i=1

F k
i ) ∗ F k

n−1(p − 1) + (
n−2∑
i=p

F k
i (p − 1)) ∗ F k

n−1 for p ≥ 2

Proof. The only types having 0 premises are simply ground type vari-
ables. These variables have obviously length 1.

F k
n (1) = kF k

n−1 is the number of types of the form τ → a since for each
type of length n − 1 we can choose k ground types a.

The formula for p ≥ 2 is correct because any type τ → µ has to have p
premises if µ has p-1 premises. This type can have length n in 3 disjoint
cases

1. |τ | = n−1 and |µ| < n−1 - we have F k
n−1

∑n−2
i=p F k

i (p − 1) such types.
The sum starts with i=p because F k

p−1(p − 1) = . . . = F k
1 (p − 1) = 0.

2. |τ | < n−1 and |µ| = n−1 - we have
∑n−2

i=1 F k
i F k

n−1(p − 1) such types

3. |τ | = n − 1 and |µ| = n − 1 - we have F k
n−1F

k
n−1(p − 1) such types

Hence the lemma holds. �

Definition 3.3.2. By ”a-type” for some ground type a we mean any
type of the form τ1, . . . , τp → a. A type is also ”a-type” for p = 0.

By a simple non-tautology we mean a formula which corresponding
type is an ”a-type” τ such that all its components are not ”a-types” for
any ground type a.

The number of simple non-tautologies of length n built from k variables
we will denote by Ck

n.
The number of simple non-tautologies of length n built from k variables

with exactly p premises will be denoted by Ck
n(p).

It is worth noticing that a simple non-tautology is neither an intuition-
istic nor a classic tautology (we can cause the term to have value zero by
assigning 1 to all ground types different from a, and 0 to a).

Lemma 3.3.2. The number Ck
n(p) is given by

(
k − 1

k

)p

F k
n (p)
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Proof. There are F k
n (p)

kp+1 patterns of types with p premises of the form:

(. . . → ©), (. . . → ©), . . . , (. . . → ©) → ©

in which © are places in the type left for some ground types to fill. There
are exactly p + 1 such places. There are k(k − 1)p ways of filling a pattern
in such a way as to obtain a simple non-tautology. Altogether there are

F k
n (p)

kp+1
k(k − 1)p =

(
k − 1

k

)p

F k
n (p)

of simple non-tautologies with p premises. �

Lemma 3.3.3. The total number Ck
n of types corresponding to simple

non-tautologies of length n built from k ground type variables is exactly
(

k − 1
k

)0

F k
n (0) +

(
k − 1

k

)1

F k
n (1) + . . . +

(
k − 1

k

)n−1

F k
n (n − 1)

Proof. The formula for all simple non-tautologies can be obtained just
by adding all simple non-tautologies for every possible p, since all classes
of simple non-tautologies described by the numbers Ck

n(p) are disjoint. �

Lemma 3.3.4. The sequence F k
n (n−1)

xk
n

is decreasing for n ≥ 2 and for

every k and the seqeunce F k
n (n−p)

xk
n

is increasing for every p ≥ 2, n ≥ p + 1
and every k.

Proof. Using Lemma 3.3.1 we have

F k
n (n − p)

xk
n

− F k
n−1(n − p − 1)

xk
n−1

=
1

(xk
n−1

2 + k)xk
n−1

×

(
(xk

n−1F
k
n−1(n − p − 1) + (

n−2∑
i=n−p

F k
i (n − p − 1))F k

n−1)x
k
n−1

−F k
n−1(n − p − 1)(xk

n−1
2
+ k)

)

Since (xk
n−1

2 + k)xk
n−1 is positive, we have

F k
n (n − p)

xk
n

− F k
n−1(n − p − 1)

xk
n−1

> 0 ⇔



ASYMPTOTIC DENSITY IN INTUITIONISTIC LOGIC 89

xk
n−1

2
F k

n−1(n − p − 1) + (
n−2∑

i=n−p

F k
i (n − p − 1))F k

n−1x
k
n−1

−xk
n−1

2
F k

n−1(n − p − 1) − kF k
n−1(n − p − 1) > 0 ⇔

xk
n−1F

k
n−1(

n−2∑
i=n−p

F k
i (n − p − 1)) > kF k

n−1(n − p − 1)

For p=1 the sum occurring in the inequality vanishes. For every p ≥ 2
and for every n ≥ p + 1 and every k the sum is a positive natural number.
Since xk

n−1 > k for all positive integers k and every natural n ≥ 2, and
F k

n−1 > F k
n−1(n − p − 1), it implies that the sequence is increasing. �

Lemma 3.3.5.

lim
n→∞

F k
n (n − p)

xk
n

exists for all k, p = 1, . . . , n − 1

Proof. The sequence whose limit is considered is bounded. On the
other hand, it is monotonous, as we proved in Lemma 3.3.4. More precisely
for p = 1 and n ≥ 2 this sequence is decreasing, for other p’s less or equal
n − 1 it is increasing, and for p = n (n ≥ 2) it is equal 0. Hence the limit
exists. �

Now we shall provide a proof which is somewhat stronger than needed
here, from which we shall deduce Lemma 3.3.7.

Lemma 3.3.6. ∀k ≥ 2 ∀p ≥ 2 ∀n ≥ max(5, p + 1)

k − 1
kxk

n−3

F k
n (p) > F k

n (p − 1) + F k
n−1

Proof. Let us assume that n is fixed. Induction over p.
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Let us consider the case where p = 2. We have

k − 1
kxk

n−3

F k
n (2) =

k − 1
kxk

n−3

((
n−1∑
i=1

F k
i )F k

n−1(1) + (
n−2∑
i=2

F k
i (1))F k

n−1)

=
k − 1
kxk

n−3

(xk
n−1kF k

n−2 + (
n−2∑
i=2

kF k
i−1)F

k
n−1)

=
k − 1
xk

n−3

(xk
n−1F

k
n−2 + xk

n−3F
k
n−1)

≥ 1
xk

n−3

(xk
n−1F

k
n−2 + xk

n−3F
k
n−1)

>
1

xk
n−3

(F k
n−1kxk

n−3 + xk
n−3F

k
n−1) = F k

n (1) + F k
n−1

The last inequality holds since xk
n−1 > F k

n−1 and it can easily be proved
that F k

n−2 > kxk
n−3 for n ≥ 5, k ≥ 1.

Let us suppose the lemma holds for every 2 ≤ i ≤ p. We have

k − 1
kxk

n−3

F k
n (p + 1) =

k − 1
kxk

n−3

((
n−1∑
i=1

F k
i )F k

n−1(p) + (
n−2∑

i=p+1

F k
i (p))F k

n−1)

= (
n−1∑
i=1

F k
i )

k − 1
kxk

n−3

F k
n−1(p) + (

n−2∑
i=p+1

k − 1
kxk

n−3

F k
i (p))F k

n−1

> (
n−1∑
i=1

F k
i )(F k

n−1(p − 1) + F k
n−2)

+(
n−2∑

i=p+1

(F k
i (p − 1) + F k

i−1))F
k
n−1

= F k
n (p) − F k

p (p − 1)F k
n−1 + (

n−1∑
i=1

F k
i )F k

n−2

+(
n−2∑

i=p+1

F k
i−1)F

k
n−1

≥ F k
n (p) − F k

p (p − 1)F k
n−1 + F k

n−1(F
k
n−2 − 1 + 1)

= F k
n (p) − F k

p (p − 1)F k
n−1 + F k

n−1 + (F k
n−2 − 1)F k

n−1

≥ F k
n (p) + F k

n−1
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The last inequality holds since F k
n−2 − 1 > F k

p (p − 1) for p ≤ n− 2 and
n ≥ 5. Hence the lemma holds. �

As an immediate derivation of this lemma we obtain

Lemma 3.3.7. ∀k ≥ 2 ∀p ≥ 2 ∀n ≥ max(5, p + 1)

k − 1
2k

F k
n (p) > F k

n (p − 1)

Now we will show the following lemma

Lemma 3.3.8.

∀ k lim
n→∞

Ck
n(n − p)

xk
n

= 0

Proof. We know by Lemma 3.3.5 that limn→∞
F k

n (n−p)
xk

n
exists (p =

1, . . . , n). This limit is finite since F k
n (n−p)

xk
n

is bounded. Since

lim
n→∞(

k − 1
k

)n−p = 0,

this gives

lim n → ∞(k−1
k )n−pF k

n (n − p)
xk

n

= lim
n→∞

Ck
n(n − p)

xk
n

= 0

�
Lemma 3.3.9.

∀ k lim
n→∞

Ck
n

xk
n

= 0

Proof. By Lemma 3.3.8 (taking p = 1) we have

∀ ε ∃ N ≥ 4 ∀ n > N
(k−1

k )n−1F k
n (n − 1)

xk
n

≤ ε

But by Lemma 3.3.7 we have ∀ n > N, p = 1, . . . , n − 2

(k−1
k )n−p−1F k

n (n − p − 1)
xk

n

<
(k−1

k )n−p−1 k−1
2k F k

n (n − p)
xk

n

=
1
2

(k−1
k )n−pF k

n (n − p)
xk

n

≤ 1
2
ε
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Thus

∀ n > N
(k−1

k )n−pF k
n (n − p)

xk
n

≤ ε

2p−1
for p = 1, . . . , n − 1

Hence

∀ n > N
(k−1

k )0F k
n (0) + (k−1

k )1F k
n (1) + . . . + (k−1

k )n−1F k
n (n − 1)

xk
n

≤ 0 +
ε

2n−2
+

ε

2n−3
+ . . . + ε < 2ε

which means that

∀ k lim
n→∞

(k−1
k )0F k

n (0) + (k−1
k )1F k

n (1) + . . . + (k−1
k )n−1F k

n (n − 1)
xk

n

= lim
n→∞

Ck
n

xk
n

= 0

�

Theorem 3.

∀ k lim
n→∞

Ck
n

F k
n

= 0

Proof. This is a simple consequence of Lemma 2.0.8 and Lemma 3.3.9.
�

This result should be contrasted with the analogous one in [2] and [3],
where (by the linear definition of the length of a type) the correspondent
fraction for every k tends to a positive number as k tends to infinity. More-
over, it tends exactly to 1, which intuitively means that the types corre-
sponding to simple non-tautologies are statistically almost the only ones
occurring in typed lambda calculus.

Here we can only state that this special subclass of non-tautologies is
in terms of asymptotic density of no importance. However, we do not
have enough information to conclude the statistical behaviour of all non-
tautologies by our complexity measure of a type.
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4. Conjectures

In Chapter 2 we showed that a natural asymptotic density of one-variable
tautologies exists and is equal to 1. In Chapter 3 we investigated types
built from more ground type variables, in particular we dealt with simple
tautologies and simple non-tautologies. Our results prove that the asymp-
totic density of tautologies (as they contain simple tautologies) is positive
for every k. However, it does not tell us what value the asymptotic den-
sity exactly has. We conjecture that the asymptotic density decreases as
k increases. It is not known what we would get if we evaluated the limit
of these densities over k tending to infinity. We suppose that, as in [3], we
would obtain 0.

These conjectures expressed in terms of our notation are

1.

lim inf
n→∞

T k
n

F k
n

> lim inf
n→∞

T k+1
n

F k+1
n

, for k ≥ 1

2.

lim
k→∞

lim inf
n→∞

T k
n

F k
n

= 0
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