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Abstract In this paper the sensitivity of optimal solutions to control problems
described by second order evolution subdifferential inclusions under perturbations
of state relations and of cost functionals is investigated. First we establish a new exis-
tence result for a class of such inclusions. Then, based on the theory of sequential
�-convergence we recall the abstract scheme concerning convergence of minimal val-
ues and minimizers. The abstract scheme works provided we can establish two prop-
erties: the Kuratowski convergence of solution sets for the state relations and some
complementary �-convergence of the cost functionals. Then these two properties are
implemented in the considered case.

Keywords Evolution subdifferential inclusion · Control problem · Sensitivity · The
Clarke subdifferential · Multifunction · Pseudomonotone and maximal monotone
operators · PG- and �-convergences

1 Introduction

It is well known ([39,44–46]) that many problems from mechanics (elasticity theory,
semipermeability, electrostatics, hydraulics, fluid flow), economics and so on can be
modeled by subdifferential inclusions or hemivariational inequalities. The latter are
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generalizations of partial differential equations (PDEs) and variational inequalities
[26] in the sense that besides of physical phenomena leading to classical PDEs one
has to take into consideration some nonlinear, nonmonotone and possibly multivalued
laws (e.g. stress–strain, reaction–displacement, generalized forces–velocities, etc.)
which can be expressed by means of the Clarke subdifferential.

In this paper, which is in a sense a continuation of [22,25], we deal with con-
trol problems for systems governed by evolution second order inclusions which are
equivalent to second order hemivariational inequalities. More precisely, we consider

minimize
{
F(u, y) := F (1)(y) + F (2)(u) + F (3)(y0) + F (4)(y1)

}
(C P)

subject to

⎧⎪⎨
⎪⎩

y′′(t) + (Ay′)(t) + (By)(t) + ι∗∂ J 1(ιy(t))

+ι∗∂ J 2(ιy′(t)) � f (t) + (Cu)(t) for a.e. t ∈ (0, T )

y(0) = y0, y′(0) = y1, y ∈ V, y′ ∈ Wpq , u ∈ U ,

(P)

where T > 0, A and B are the Nemitsky operators corresponding, respectively, to
a pseudomonotone operator A and a linear one B, J 1 and J 2 are locally Lipschitz
superpotentials defined on a reflexive Banach space Z (∂ denotes their Clarke subdif-
ferentials), ι is a linear, continuous and compact operator and C is an operator acting
on the space U . The control is given as u = (u, y0, y1) ∈ U ⊂ U × V × H , and the
cost functionals F (i), (i = 1, . . . , 4) are typically in integral form (for details and
definitions of spaces V, H , V and Wpq , see Sect. 3).

Our goal is twofold. First prove a new existence result for the Problem (P)with the
sum of two superpotentials, dependent, respectively, on displacement and its velocity.
Secondwe investigate the sensitivity of optimal solutions to the control problem (C P);
i.e., we are interested in the behavior of optimal solutions under perturbations of the
system (state relations; e.g. coefficients in inclusion or parameters in superpotential
are perturbed,...) as well as of perturbations of the cost functional (e.g. integrands
depending on parameters).

Our approach is based on the sequential �-convergence (epi-convergence in terms
of [3]) theory (see [7,13,14,16,48]) in the sensitivity part, while for the existence of
optimal solutions, we use the direct method. The nonemptiness of the solution set for
(P) follows from the theory of pseudomonotone operators (cf. [24,51]) and it can
be obtained for fairly general classes of operators. However, for sensitivity results,
we restrict ourselves to special classes of maximal monotone operators for which the
notion of PG-convergence can be applied.

The basic properties assuring the convergence of minimal values and minimizers
of perturbed control problems to the minimal value and to a minimizer, respectively,
of unperturbed problem are: on one hand the Painlevé-Kuratowski convergence (we
use the nomenclature Kuratowski convergence in the sequel, for consistency with our
previous works) of solution sets, which can be expressed as �-convergence of their
indicator functions and on the other hand some ”complementary �-convergence” of
cost functionals.
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The sensitivity of control problemswas largely considered in the literature in papers
on optimal control for systems governed by ordinary differential equations ([7–9,27]),
partial differential equations ([15,31–34], Chapter 4.2 of [24]), partial differential
equations and differential inclusions ([1,2,6,16]). We mention that the related control
problems for systems described by Clarke subdifferential inclusions and hemivaria-
tional inequalities were studied in [5,22,25,29,36,37] the shape optimization prob-
lems for Clarke subdifferential inclusions were considered in [18–21,28,43] and the
corresponding inverse and identification problems were treated in [35]. More recently,
the PG-convergence approach was used in homogenization problems for initial and
boundary value problems for second order (in time) equations with linear damping
and nonlinear elliptic terms (the homogenization was done with respect to coefficients
present in the elliptic term) by Svanstedt [50], whose work was further extended
in [40–42].

The paper is organized as follows. In Sect. 2 we present an abstract setting for
the multivalued operators and subdifferential inclusions as well as the sensitivity
analysis which is based on the �-convergence theory. Moreover, we recall some use-
ful definitions and results from the theory of Clarke subdifferential and theory of
pseudomonotone operators. In Sect. 3 we recall the definition and properties of PG
convergence. Next, we present the control problem formulation and provide a priori
estimates as well as the existence result for the underlying Problem (P). Furthermore,
we analyze the perturbed problems and provide results on the Kuratowski conver-
gence of solution sets, and we formulate sensitivity result. In Sect. 4 we discuss the
�-convergence of cost functionals and present the main result on the sensitivity of
optimal solutions. In Sect. 5 we give examples of concrete operators and functionals
which satisfy the abstract assumptions of preceding sections.

2 General Setting and Preliminaries

2.1 Abstract Scheme

In this subsection we recall the abstract scheme based on the �-convergence theory
which we use to study the stability of optimal control problems.

We consider a control system governed by a relationRwhich links the state y ∈ Y
to the control variable u ∈ U, Y and U being the topological spaces of states and
controls, respectively. Generally, the relationR can be chosen as an ordinary differen-
tial equation, a partial differential equation or a partial differential inclusion. It is also
possible to consider variational inequalities (VI) or hemivariational inequalities (HVI).

The optimal control problem under consideration reads as follows: find (u∗, y∗) ∈
R which minimizes a cost functional F :

minimize {F(u, y) : (u, y) ∈ R} (= F(u∗, y∗) =: m
)
, (C P)R

where the set R of admissible control-state pairs is defined by:

R = graph SR = {(u, y) : y ∈ SR(u), u ∈ U}
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and the solution map is given by

SR : U � u −→ SR(u) = {y ∈ Y : (u, y) ∈ R} ⊂ Y .

The set of optimal solutions to (C P)R is denoted by R∗, i.e.,

R∗ = {
(u∗, y∗) ∈ R : F(u∗, y∗) = m

}
.

The sensitivity (stability) is understood as a “nice-continuous” asymptotic behavior
of optimal solutions to the perturbed problems, i.e. perturbed state relations Rk and
perturbed cost functionals Fk . So we consider the sequence of optimal control prob-
lems indexed by k ∈ N̄ = N∪ {∞}, where the index k ∈ N indicates “a perturbation”
and k = ∞ corresponds to the unperturbed original problem:

minimize {Fk(u, y) : (u, y) ∈ Rk}
(= Fk(u

∗
k , y∗

k ) =: mk
)

(C P)Rk

and Rk = graph SRk . We are looking for conditions which assure the following
stability results:

(i) mk → m∞ as k → ∞,
(ii) K (U × Y) − lim supR∗

k ⊂ R∗∞,

where K (U×Y)−lim sup stands for the sequential Kuratowski upper limit of sets. It is
worth to recall (see e.g. Proposition 4.3 of [16]) that (ii) is equivalent to the following
condition: if {kn} is an increasing sequence in N, (u∗

kn
, y∗

kn
) ∈ R∗

kn
, u∗

kn
converges to

u∗∞ in U and y∗
kn

converges to y∗∞ in Y , then (u∗∞, y∗∞) ∈ R∗∞.
In order to establish the conditions (i) and (ii), first we reformulate the problem

(C P)Rk as the unconstrained optimization one:

minimize
{
Fk(u, y) + δRk (u, y) : (u, y) ∈ U × Y

}
, (C P)Rk

where δR denotes the indicator function of the set R, i.e.,

δR(x) =
{
0 x ∈ R
+∞ x /∈ R,

and then we apply an approach based on the theory of �-convergence (epi-
convergence), cf. [7,13,48], and the references therein.

2.2 Sequential �-convergence

For the convenience of the reader in this subsection we recall some material from
the �-convergence theory, the generalized Clarke subdifferential and the theory of
multivalued operators of monotone type.

We quote here the definition of �seq -convergence for functions of two variables.
The case of one variable follows easily by omitting the other. For the case of functions
of many variables we refer to Buttazzo and Dal Maso [7].
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Let U and Y be two topological spaces. For u ∈ U and y ∈ Y we put σu := {{uk} ⊂
U : uk → u} and σy := {{yk} ⊂ Y : yk → y}. GivenFk : U×Y → R̄ = R∪{±∞},
k ∈ N, we define

�seq(U−,Y+) lim inf
k→∞ Fk(u, y) = inf

σu
sup
σy

lim inf
k→∞ Fk(uk, yk),

�seq(U−,Y+) lim sup
k→∞

Fk(u, y) = inf
σu

sup
σy

lim sup
k→∞

Fk(uk, yk),

and if both these extended real numbers are equal, we say that there exists

�seq(U−,Y+) lim
k→∞Fk(u, y). ( j)

Similarly, for other combination of signs (+ and − denote sup and inf, respectively)
we have

�seq(U−,Y−) lim inf
k→∞ Fk(u, y) = inf

σu
inf
σy

lim inf
k→∞ Fk(uk, yk),

�seq(U−,Y−) lim sup
k→∞

Fk(u, y) = inf
σu

inf
σy

lim sup
k→∞

Fk(uk, yk),

and if they are equal there exists

�seq(U−,Y−) lim
k→∞Fk(u, y). ( j j)

In turn, if the numbers in ( j) and ( j j) are equal, we say that there exists

�seq(U−,Y±) lim
k→∞Fk(u, y)

and then we write simply

�seq(U−,Y) lim
k→∞Fk(u, y) = ( j) = ( j j).

The general definition of a topological �−limit is given by De Giorgi and Franzoni
in [14], where one can also find the following theorem concerning the variational
convergence of minimal values and minimizers.

Theorem 1 Let X be a topological space and let fk : X → R̄ = R ∪ {±∞}, k ∈ N̄

be such that f∞ = �(X−) lim
k→∞ fk . If

lim inf
k→∞ fk (̂xk) = lim inf

k→∞

(
inf
X

fk(x)

)

(in this case x̂k is called to be “quasioptimal”) and

x̂kn → x̂∞ as n → ∞,
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then f∞(̂x∞) = inf
X

f∞(x) = lim
k→∞ fk (̂xk).

In the sequel we put

X = U × Y, Rk = (P)k

Sk = SRk and fk(x) = Fk(u, y) + δRk (u, y).

Remark 2 If the topological space X satisfies the first axiom of countability, then
the sequential �seq(X−)-convergence coincides (see Proposition 8.1 of [12]) with
the topological �(X−)-convergence of De Giorgi and Franzoni [14]. Moreover, the
sequential �-limit operation is not additive, i.e. it is not enough to know � limFk and
� lim δRk in order to calculate � lim(Fk + δRk ), cf. Example 6.18 in [12].

In order to calculate the �-limit of the sum of two functions we use the following
two theorems

Theorem 3 (Buttazzo and Dal Maso [7]) If

F(u, y) = �seq(U−,Y) lim
k→∞Fk(u, y),

G(u, y) = �seq(U,Y−) lim
k→∞Gk(u, y),

then

F(u, y) + G(u, y) = �seq(U−,Y−) lim
k→∞ (Fk(u, y) + Gk(u, y)) .

Theorem 4 If there exist

F (1)(x) = �seq(X−) lim
k→∞F (1)

k (x)

and

F (2)(y) = �seq(Y−) lim
k→∞F (2)

k (y),

then there exists also

�seq((X × Y)−) lim
k→∞[F (1)

k (x) + F (2)
k (y)]

and we have

�seq((X × Y)−) lim
k→∞[F (1)

k (x) + F (2)
k (y)] = F (1)(x) + F (2)(y).

Note that Theorem4 follows directly fromTheorem3.Moreover, due to Theorem3,
the convergences
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(i) mk → m∞ (of minimal values) and
(ii) K (U × Y) − lim supR∗

k ⊂ R∗∞,

follow from the following result (see also Propositions 4.1 and 4.5 in [16]):

Proposition 5 Suppose
F∞ = �seq(U−,Y) limFk, (1)

δR∞ = �seq(U,Y−) lim δRk . (2)

Let (̂uk, ŷk) be optimal or “quasioptimal solutions” to the problems (C P)Rk such
that

lim inf
k→∞ Fk (̂uk, ŷk) = lim inf

k→∞

(
inf
Rk

Fk

)
(3)

and
(̂ukn , ŷkn ) → (̂u∞, ŷ∞) as n → ∞. (4)

Then F∞(̂u∞, ŷ∞) = inf
R∞

F∞(u, y) = lim
k→∞

(
inf
Rk

Fk(u, y)

)
.

Remark 6 The condition (2) of Proposition 5 is equivalent (cf. Propositions 4.3 and
4.4 of [16]) to the sequential Kuratowski convergence

Sk(uk)
K (Y)−→ S∞(u) for all uk

U−→ u, (2’)

i.e.

K (Y) − lim supSk(uk) ⊂ S∞(u) ⊂ K (Y) − lim inf Sk(uk) for all uk
U−→ u,

(2”)

while the condition (1) (the complementary�-convergence), roughly speaking, means
a continuous convergence of cost functionals with respect to y and�(U−) convergence
with respect to u. Note that for the sequence of operators Gk : X → Y , where X
and Y are topological spaces, we say that Gk converges continuously (sequentially)
to G∞ (Gk

c−→ G∞) if for every sequence xk → x∞, we have Gk(xk) → G∞(x∞).
We also recall that for a sequence of sets {An}n∈N in the topological space X , by
K (X )− lim inf An we mean the set of all limits of sequences {xn} such that xn ∈ An ,
while the set K (X ) − lim sup An consists of all limits of subsequences {xk} such that
xk ∈ Ank for any increasing sequence {nk} ⊂ {n}.

2.3 Clarke Subdifferential

Given a locally Lipschitz function J : Z → R, where Z is a Banach space, we recall
(see [10]) the definitions of the generalized directional derivative and the generalized
gradient of Clarke. The generalized directional derivative of J at a point u ∈ Z in the
direction v ∈ Z , denoted by J 0(u; v), is defined by

J 0(u; v) = lim sup
y→u, t↓0

J (y + tv) − J (y)

t
.
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The generalized gradient of J at u, denoted by ∂ J (u), is a subset of a dual space Z∗
given by ∂ J (u) = {ζ ∈ Z∗ : J 0(u; v) ≥ 〈ζ, v〉Z∗×Z for all v ∈ Z}. For the properties
of Clarke subdifferential, see for example [10].

2.4 Multivalued Operators

We give the basic definitions for multivalued operators and then we quote the main
surjectivity result for the operator classes under consideration (see e.g. [24,39,47]).
Let Y be a reflexive Banach space and Y ∗ be its dual space and let T : Y → 2Y ∗

be a
multivalued operator.

We say that T is:

(1) upper semicontinuous if for any closed subset C ⊆ Y ∗, the set T −(C) = {y ∈
Y : T y ∩ C �= ∅} is closed in Y ,
Let L : D(L) ⊂ Y → Y ∗ be a linear, densely defined and maximal monotone
operator.

(2) T is L-generalized pseudomonotone, if the following conditions hold:
(a) for every y ∈ Y , T y is a nonempty, convex and weakly compact subset of Y ∗,
(b) T is upper semicontinuous from each finite-dimensional subspace of Y into

Y ∗ equipped with the weak topology,
(c) if {yn} ⊆ D(L), yn −→ y weakly in Y , y ∈ D(L), Lyn −→ Ly weakly in

Y ∗, y∗
n ∈ T yn , y∗

n −→ y∗ weakly in Y ∗ and lim sup
n→+∞

〈y∗
n , yn − y〉 ≤ 0, then

y∗ ∈ T y and 〈y∗
n , yn〉 −→ 〈y∗, y〉.

The crucial point in the proof of the existence of a solution to the subdifferential
inclusions considered below is the following surjectivity result.

Proposition 7 If Y is a reflexive, strictly convex Banach space, L : D(L) ⊂ Y → Y ∗
is a linear, densely defined, maximal monotone operator and T : Y → 2Y ∗ \ {∅}
is a bounded, coercive and L-generalized pseudomonotone operator, then L + T is
surjective.

The proof of Proposition 7 can be found in [47], Theorem 2.1, p. 345.

3 Control Problem for Second Order Subdifferential Inclusion

In this sectionwe consider optimal control problem for systems described by evolution
of second order subdifferential inclusion. We first recall the notion of parabolic G-
convergence (PG-convergence) of operators, then we state a result on the sensitivity
of the solution set.

3.1 Notation

Let � be an open bounded subset of RN and let V = W 1,p
0 (�), H = L2(�), V ∗ =

W −1,q(�), where 2 ≤ p < ∞ and 1/p +1/q = 1. Moreover, we consider a reflexive
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and separable Banach space Z and a linear continuous and compact mapping ι : V →
Z . Then V ⊂ H ⊂ V ∗ with compact embeddings. We denote, respectively, by 〈·, ·〉
and (·, ·) the duality between V and its dual V ∗ and the inner product in H , and by ‖·‖,
|·|, ‖·‖V ∗ the norms in V , H and V ∗, respectively.Moreover, the adjoint operator to ι is
denoted by ι∗ : Z∗ → V ∗. Given 0 < T < +∞, let Q = �×(0, T ).We introduce the
following spaces V = L p(0, T ; V ), Z = L p(0, T ; Z), H = L2(0, T ; H) � L2(Q),
Z∗ = Lq(0, T ; Z∗), V∗ = Lq(0, T ; V ∗) andWpq = {v ∈ V : v′ ∈ V∗}. The duality
for the pair (V,V∗) is denoted by 〈〈 f, v〉〉V∗×V = ∫ T

0 〈 f (t), v(t)〉dt . It is well known
[51] that

Wpq ⊂ V ⊂ H ⊂ V∗,

andWpq is embedded in C(0, T ; H) continuously. We set Y = {v ∈ V : v′ ∈ Wpq}.
The space Y is endowed with the topology 	 defined in the following way

vn
	−→v ⇔

⎧⎪⎨
⎪⎩

vn → v weakly in V,

v′
n → v′ weakly in V,

v′′
n → v′′ weakly in V∗.

We assume that the Nemytskii operator ῑ : Wpq → Z corresponding to ι, is compact
(for simplicity in the sequel we use the same symbol ι for its Nemytskii operator).
For example, in particular application, we put Z = L p(�) and ι being the embedding
operator. Then, by the Lions–Aubin Lemma, we know that required compactness of

ῑ holds. Note, moreover, that if vn
	−→v, then, by the Lions–Aubin Lemma, vn → v

and v′
n → v′ strongly inH. Moreover, if vn

	−→v, then vn(t) → v(t)weakly in V and
v′

n(t) → v′(t) weakly in H for all t ∈ [0, T ].

3.2 PG-Convergence of Parabolic Operators

Following Svanstedt [49] we start with the following definition.

Definition 8 Given nonnegative constants m0, m1, m2 and 0 < α ≤ 1, we set

M = M(m0, m1, m2, α) := {a : Q × R
N → R

N such that (i) − (iv) below hold}

(i) |a(t, x, 0)| ≤ m0 a.e.in Q;
(ii) a(·, ·, ξ) is Lebesgue measurable on Q for all ξ ∈ R

N ;
(iii) |a(t, x, ξ)− a(t, x, η)| ≤ m1(1+|ξ |+ |η|)p−1−α|ξ −η|α a.e. in Q , for all ξ , η;
(iv) (a(t, x, ξ) − a(t, x, η), ξ − η)RN ≥ m2|ξ − η|α a.e. in Q, for all ξ , η ∈ R

N .

Remark 9 If a ∈ M, then the following inequalities hold

⎧⎨
⎩

|a(t, x, ξ)| ≤ c1(1 + |ξ |)p−1 a.e. in Q, for all ξ ∈ R
N

|ξ |p ≤ c2(1 + (a(t, x, ξ), ξ)RN ) a.e. in Q, for all ξ ∈ R
N
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so the mappings from the class M are uniformly bounded, coercive and monotone.

Definition 10 A sequence of maps ak ∈ M is PG convergent to a map

a∞ ∈ M, written as ak
PG−→ a∞, if for every g ∈ V∗ we have

⎧⎪⎨
⎪⎩

yk
w−Wpq−→ y∞,

ak(t, x, Dyk)
w−Lq (Q,RN )−→ a∞(t, x, Dy∞),

where yk , k ∈ N̄ = N ∪ {∞}, is the unique solution to the problem

y′ − divak(t, x, Dy) = g, y(0) = 0. (5)

Here and in the sequel the symbol D denotes the gradient operator taken with
respect to the space variable x ∈ � and the symbol div denotes the divergence with
respect to the space variable x ∈ �.

Remark 11 Given ak ∈ M, it can be shown that the Nemitsky operatorsAk : V → V∗
of the form

(Ak y)(t) = Ak(t, y), t ∈ (0, T )

corresponding to the family of operators Ak(t, y) = − div ak(t, x, Dy) are boun-
ded, coercive, hemicontinuous and monotone. Therefore, by Proposition 7, for every
k ∈ N̄ and g ∈ V∗, there exists a unique solution yk ∈ Wpq to the problem (5). The
compactness of the class M with respect to the PG-convergence was established in
[49]. The Definition 10 generalizes the one given for a class of linear operators by
Colombini and Spagnolo in [11].

Remark 12 Weuse the notion of parabolic convergence to dealwith the second order
(in time) problem. This approach is possible due to the fact that the viscosity operator is
coercive and hence the nature of the problem is parabolic. It remains an open problem,
whether Definition 10 can be modified to include the second time derivative in the
auxiliary problem (5). This would require to show the compactness of the underlying
class of operators with respect to this new mode of convergence.

3.3 Problem Statement

We consider the following sequence of second order subdifferential inclusions:

⎧⎪⎨
⎪⎩

y′′(t) + Ak(t, y′(t)) + Bk y(t)

+ι∗∂ J 1
k (ιy′(t)) + ι∗∂ J 2

k (ιy(t)) � fk(t) + (Cku)(t) a.e. t ∈ (0, T )

y(0) = y0k , y′(0) = y1k , y ∈ Y,

(P)k

123



Appl Math Optim (2015) 71:379–410 389

for k ∈ N̄, where J 1
k : Z → R and J 2

k : Z → R are superpotentials. Furthermore
fk ∈ V∗, Ck : U → V∗, y0k ∈ V and y1k ∈ H .
The hypotheses on the data of (P)k are the following.

H(A) : Ak : (0, T ) × V → V ∗ are the operators of the form

Ak(t, y) = −div ak(t, x, Dy) with ak ∈ M, k ∈ N̄ and ak
PG−→ a∞.

H(B) : Bk ∈ L(V ; V ∗) is the family of operators such that

(i) 〈Bk y, v〉 ≤ M‖y‖‖v||, 〈Bk y, y〉 ≥ 0 for all y, v ∈ V , k ∈ N̄ with M > 0;
(ii) the sequence Bk : V → V∗ of Nemytski operators corresponding to Bk defined

by (Bk y)(t) = Bk y(t) satisfies

if yk
	−→y∞ then Bk yk → B∞y∞ strongly in V∗.

H(J 1) : J 1
k : Z → R are locally Lipschitz functions that satisfy

uniformly in k the conditions

(i) ||∂ J 1
k (z)||Z∗ ≤ c3(1 + ||z||p−1

Z ) for all z ∈ Z with some c3 > 0;
(ii) infξ∈∂ J 1

k (z)〈ξ, z〉Z∗×Z ≥ c4 − c5‖z‖p
Z for all z ∈ Z with c4 ∈ R and c5 ≥ 0;

(iii) K (s − Z , w − Z∗) − lim sup
k→∞

Gr ∂ J 1
k ⊂ Gr ∂ J 1∞.

H(J 2) : J 2
k : Z → R are locally Lipschitz functions that satisfy

uniformly in k the conditions

(i) ||∂ J 2
k (z)||Z∗ ≤ c6(1 + ||z||p−1

Z ) for all z ∈ Z with some c6 > 0;
(ii) K (s − Z , w − Z∗) − lim sup

k→∞
Gr ∂ J 2

k ⊂ Gr ∂ J 2∞.

H(C) : Ck ∈ L(U ,V∗) and ‖Ck‖L(U;V∗) are bounded uniformly for k ∈ N̄, where

U is a reflexive separable Banach space and Ck
c−→ C∞ continuously.

(H0) : y0k ∈ V , y1k ∈ H , fk ∈ V∗, k ∈ N̄, y0k
s−V−→y0∞, y1k

s−H−→ y1∞ , fk
s−V∗−→ f∞.

(H1) : The following relation holds

‖ι‖p
(

c5 + c6T p−1
)

<
1

c2
.

We start with a priori estimate for the solution of the problem (P)k . To this end,
we give the following lemma.

Lemma 13 If the assumptions H(A), H(B)(i), H(J 1), H(J 2), (H0), H(C) and (H1)

hold and y is a solution of the problem (P)k , then it satisfies

‖y‖p
C(0,T ;V )

+ ‖y′‖2C(0,T ;H) + ‖y′‖p
V + ‖y′′‖q

V∗
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≤ C(1 + ‖y0k ‖p + |y1k |2 + ‖Ck‖q
L(U;V∗)‖u‖q

U + ‖ fk‖q
V∗), (6)

with a constant C > 0 dependent only on T,� and the constants M, ci , i = 1, . . . , 6.

Proof Let y ∈ Y be a solution of the problem (P)k . Taking the duality brackets with
y′(t) ∈ V and integrating over (0, t) for any t ∈ (0, T ), we have

t∫

0

〈y′′(s), y′(s)〉 ds +
t∫

0

〈Ak(s, y′(s)), y′(s)〉 ds +
t∫

0

〈Bk y(s), y′(s)〉 ds

+
t∫

0

〈ξ(s), ιy′(s)〉Z∗×Z ds +
t∫

0

〈ζ(s), ιy′(s)〉Z∗×Z ds

=
t∫

0

〈 fk(s), y′(s)〉 ds +
t∫

0

〈(Cku)(s), y′(s)〉 ds (7)

with ξ(s) ∈ ∂ J 1
k (ιy′(s)) and ζ(s) ∈ ∂ J 2

k (ιy(s)) for a.e. s ∈ (0, t). From the integration
by parts formula (Proposition 23.23(iv), pp. 422–423 of [51]), we get

t∫

0

〈y′′(s), y′(s)〉 ds = 1

2
|y′(t)|2 − 1

2
|y1k |2. (8)

From H(A) and Remark 9 we obtain

1

c2

t∫

0

‖y′(s)‖p
V ds − t |�| ≤

t∫

0

〈Ak(s, y′(s)), y′(s)〉 ds. (9)

Since Bk is linear, symmetric and monotone, it follows that

t∫

0

〈Bk y(s), y′(s)〉 ds = 1

2

t∫

0

d

ds
〈Bk y(s), y(s)〉 ds

= 1

2
〈Bk y(t), y(t)〉 − 1

2
〈Bk y0k , y0k 〉 ≥ −1

2
M‖y0k ‖2. (10)

From H(J 1)(ii) we obtain

t∫

0

〈ξ(s), ιy′(s)〉Z∗×Z ds ≥ c4t − c5‖ι‖p

t∫

0

‖y′(s)‖p ds. (11)
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In order to estimate the last term of left hand side of (7), we will use the relation

y(s) = y0k +
s∫

0

y′(τ ) dτ for all s ∈ (0, T ) (12)

and the fact that for all a, b > 0, p > 1 there exists a function c̃ : R+ → R+ such
that for all ε > 0

(a + b)p ≤ (1 + ε)a p + c̃(ε)bp. (13)

From H(J 2)(i) and (12) we obtain

∣∣∣∣∣∣

t∫

0

〈ζ(s), ιy′(s)〉Z ds

∣∣∣∣∣∣
≤

t∫

0

‖ζ(s)‖Z∗‖ιy′(s)‖Z ds

≤
t∫

0

c6
(
1 + ‖ιy(s)‖p−1

Z

)
‖ιy′(s)‖Z ds

≤
t∫

0

c6

⎛
⎜⎝1 +

∥∥∥∥∥∥
ιy0k +

s∫

0

ιy′(τ ) dτ

∥∥∥∥∥∥

p−1

Z

⎞
⎟⎠ ‖ιy′(s)‖Z ds

≤
t∫

0

c6

⎛
⎜⎝1 +

⎛
⎝‖ιy0k ‖Z +

s∫

0

‖ιy′(τ )‖Z dτ

⎞
⎠

p−1
⎞
⎟⎠ ‖ιy′(s)‖Z ds. (14)

Using (13) and the Jensen inequality, we obtain

⎛
⎝‖ιy0k ‖Z +

s∫

0

‖ιy′(τ )‖Z dτ

⎞
⎠

p−1

≤(1+ε)

⎛
⎝

s∫

0

‖ιy′(τ )‖Z dτ

⎞
⎠

p−1

+c̃(ε)‖ιy0k ‖p−1
Z

≤ (1 + ε)t p−2

t∫

0

‖ιy′(s)‖p−1
Z ds + c̃(ε)‖ιy0k ‖p−1

Z .

Combining the last inequality with (14), we obtain

∣∣∣∣∣∣

t∫

0

〈ζ(s), ιy′(s)〉Z ds

∣∣∣∣∣∣
≤ c6(1 + c̃(ε)‖ιy0k ‖p−1

Z )

t∫

0

‖ιy′(s)‖Z ds

+ c6(1 + ε)t p−2

t∫

0

‖ιy′(s)‖p−1
Z ds

t∫

0

‖ιy′(s)‖Z ds. (15)
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After simple calculations we obtain,

c6(1 + c̃(ε)‖ιy0k ‖p−1
Z )

t∫

0

‖ιy′(s)‖Z ds ≤ ε

t∫

0

‖ιy′(s)‖p
Z ds + d̄(ε) + d̃(ε)‖ιy0k ‖p

Z ,

(16)
t∫

0

‖ιy′(s)‖p−1
Z ds

t∫

0

‖ιy′(s)‖Z ds ≤ t

t∫

0

‖ιy′(s)‖p
Z ds, (17)

where d̄(ε), d̃(ε) > 0. From (15) to (17) we obtain for any ε > 0

∣∣∣∣∣∣

t∫

0

〈ζ(s), ιy′(s)〉Z ds

∣∣∣∣∣∣
≤

(
‖ι‖pc6t p−1 + ε

) t∫

0

‖y′(s)‖p ds + ĉ(ε) + d̃(ε)‖ιy0k ‖p
Z

(18)
with ĉ(ε) > 0. In order to estimate the right hand side of (7), we use the Young
inequality with ε > 0 and obtain

t∫

0

〈 fk(s), y′(s)〉 ds +
t∫

0

〈(Cku)(s), y′(s)〉 ds

≤ ε

t∫

0

‖y′(s)‖p ds + c(ε)
(
‖ fk‖q

V∗ + ‖Ck‖q
L(U ,V∗)‖u‖q

U
)

. (19)

Combining (8), (10), (11), (18) and (19), we obtain

1

2
|y′(t)|2 +

(
1

c2
− c5‖ι‖p − c6‖ι‖pt p−1 − 2ε

) t∫

0

‖y′(s)‖p ds (20)

≤ t |�| + 1

2
M‖y0k ‖2 − c4t + ĉ(ε) + d̄(ε)‖ι‖p‖y0k ‖p

+ 1

2
|y1k |2 + c(ε)‖ fk‖q

V∗ + c(ε)‖Ck‖q
L(U;V∗)‖u‖q

U .

Hence due to (H1), we can choose ε > 0 such that the coefficient in front of∫ t
0 ‖y′(s)‖p ds is positive, getting

‖y′‖2C(0,T ;H) +‖y′‖p
V ≤ C(1+‖y0k ‖p +|y1k |2+‖Ck‖q

L(U;V∗)‖u‖q
U +‖ fk‖q

V∗), (21)

where the constant C depends on the problem data and T but it is independent on the
initial conditions and k. From the formula
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y(t) = y0k +
t∫

0

y′(s)ds for all t ∈ [0, T ]

by a direct calculation we obtain

‖y(t)‖p ≤ C(‖y0k ‖p + ‖y′‖p
V ) for all t ∈ [0, T ],

with the constant C > 0. Thus, using (21), we have

‖y‖p
C(0,T ;V )

≤ C(1 + |y1k |2 + ‖Ck‖q
L(U;V∗)‖u‖q

U + ‖y0k ‖p + ‖ fk‖q
V∗), (22)

with C > 0. Moreover, since y solves (P)k , from H(A), Remark 9, H(B), H(J 1)(i),
H(J 2)(i), H(C) and (H0) we obtain

‖y′′‖q
V∗ ≤ C(1 + ‖y‖p

C(0,T,V ) + ‖y′‖p
V + ‖Ck‖q

L(U;V∗)‖u‖q
U + ‖ fk‖q

V∗). (23)

The assertion follows from (21) to (23). ��
We introduce the family of mappings Kk : V → C(0, T ; V ) by means of the

formula

(Kk y)(t) = y0k +
t∫

0

y(s)ds for y ∈ V and t ∈ [0, T ].

Using this definition, the problem (P)k can be equivalently rewritten as follows

⎧⎪⎨
⎪⎩

z′(t) + (Ak z)(t) + (BkKk z)(t) + ι∗∂ J 1
k (ιz(t))

+ι∗∂ J 2
k (ι(Kk z)(t)) � fk(t) + (Cku)(t) a.e. t ∈ (0, T )

z(0) = y1k , z ∈ Wpq ,

(P)k

for k ∈ N̄, where Ak : V → V∗ and Bk : V → V∗ are the Nemitsky operators
corresponding to Ak , and Bk , respectively, i.e., (Akv)(t) = Ak(t, v(t)), (Bkv)(t) =
Bk(v(t)) for v ∈ V and t ∈ [0, T ].

Now we formulate the existence theorem for the problem (P)k , k ∈ N. Its proof is
analogous to the existence proof of [38], and therefore it will be sketched only briefly
here.

Theorem 14 If the assumptions H(A), H(B)(i), H(J 1), H(J 2), (H0), H(C) and
(H1) hold, then the problem (P)k , k ∈ N̄ admits a solution.

Proof Let us fix k ∈ N̄. We will proceed in two steps.
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Step 1. First we assume that y1k ∈ V and introduce the operatorsA1
k,B1

k : V → V∗,
Nk,Mk : V → 2V∗

given by

A1
kv = Ak(v + y1k ) for v ∈ V, (24)

B1
kv = B(Kk(v + y1k )) for v ∈ V, (25)

Nkv = {w ∈ V∗ : w(t) ∈ ι∗∂ J 1
k (ι(v(t) + y1k )) a.e. t ∈ (0, T )} for v ∈ V, (26)

Mkv = {w ∈ V∗ : w(t) ∈ ι∗∂ J 2
k (ιKk(v + y1k )(t)) a.e. t ∈ (0, T )} for v ∈ V.

(27)

We also consider the operator L : D(L) ⊂ V → V∗ defined by Lv = v′ with
D(L) = {v ∈ W : v(0) = 0} and observe that z ∈ Wpq solves the problem (P)k if
and only if z − y1k ∈ D(L) solves the following one:

Lz + Tk z � fk + Cuk, (28)

where the operator Tk : V → 2V∗
is given by

Tk z = A1
k z + B1

k z + Nk z + Mk z for z ∈ V.

Recall (see e.g. [51], Proposition 32.10, p. 855) that L is linear, densely defined and
maximalmonotone operator.Moreover, wewill prove that for each k ∈ N, the operator
Tk is bounded, coercive and L-generalized pseudomonotone. The solvability of the
Problem (28) follows then fromProposition 7.Wewill state the following four lemmas
on the properties of the operators A1

k,B1
k ,Nk and Mk . The proofs of these lemmas

are analogous to the proofs of the lemmas 7, 8, 9 and 12 of [38] (see also Remark 11).
��

Lemma 15 If H(A) holds and y1k ∈ V , then for each k ∈ N̄ the operator A1
k defined

by (24) satisfies:

(a) ‖A1
kv‖q

V∗ ≤ d1‖v‖p
V + d2 for all v ∈ V with d1, d2 > 0;

(b) 〈〈A1
kv, v〉〉V∗×V ≥

(
1
c2

− ε
)

‖v‖p
V − d3(ε)

for all v ∈ V , ε > 0, where d3(ε) > 0;
(c) A1

k is monotone and hemicontinuous (so also demicontinuous);
(d) A1

k is L-generalized pseudomonotone;
(e) For every {vn} ⊂ Wpq with vn → v weakly inWpq and lim supn→∞〈〈Akvn, vn −

v〉〉V∗×V ≤ 0, it follows that Akvn → Akv weakly in V∗.

Lemma 16 If H(B)(i) holds and y1k ∈ V , then for each k ∈ N̄ the operatorB1
k defined

by (25) satisfies:

(a) ‖B1
kv‖V ≤ d4(1 + ‖v‖V ) for all v ∈ V with d4 > 0;

(b) ‖B1
kv − B1

kw‖V∗ ≤ d5‖v − w‖V for all v,w ∈ V with d5 > 0;
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(c) 〈〈B1
kv, v〉〉V∗×V ≥ −d6‖v‖V − d7 for all v ∈ V with d6 ≥ 0 and d7 ≥ 0;

(d) B1
k is monotone and weakly continuous.

Moreover, if H(B)(i) holds and y1k ∈ H, then the Nemitsky operatorBk corresponding
to Bk satisfies

(f) 〈〈Bkv − Bkw, v′ − w′〉〉V∗×V ≥ 0 for all v,w ∈ W such that v(0) = w(0);
(g) Bk is weakly continuous as a mapping from Wpq to V∗.

Lemma 17 If H(J 1) holds and y1k ∈ V , then for each k ∈ N̄ the operator Nk defined
by (26) satisfies:

(a) for each v ∈ V , Nkv is a nonempty, convex and weakly compact subset of V∗;
(b) ‖w‖q

V∗ ≤ d8(1 + ‖v‖p
V ) for all w ∈ Nkv and v ∈ V , with d8 > 0;

(c) 〈〈w, v〉〉V∗×V ≥ −d9(ε) − (c5‖ι‖p + ε)‖v‖p
V for all w ∈ Nkv and v ∈ V and

ε > 0 with d9(ε) > 0;
(d) if vn → v strongly in Z , wn → w weakly in Z∗ and wn ∈ Nkvn, then w ∈ Nkv.

Lemma 18 If H(J 2) holds and y1k ∈ V , then for each k ∈ N̄ the operatorMk defined
by (27) satisfies:

(a) for each v ∈ V , Mkv is a nonempty convex and weakly compact subset of V∗;
(b) ‖w‖q

V∗ ≤ d10(1 + ‖v‖p
V ) for all w ∈ Mkv and v ∈ V , with d10 > 0;

(c) 〈〈w, v〉〉V∗×V ≥ − (
c6‖ι‖pT p−1 + ε

) ‖v‖p
V −d11(ε) for all w ∈ Mk and v ∈ V;

(d) if vn → v strongly in Z , wn → w weakly in Z∗ and wn ∈ Mkvn then w ∈ Nkv.

We continue the proof of Theorem 14.

Claim 1 Tk is bounded. This follows directly from Lemmata 15 (a), 16 (a), 17 (b) and
18 (b).

Claim 2 Tk is coercive. This follows directly from Lematta 15 (b), 16 (c), 17 (c), 18
(c) and from (H1).

Claim 3 Tk is L−generalized pseudomonotone. It can be proved by the argument
that exactly follows the lines of the proof of Theorem 6 in [38]. We omit the proof for
brevity.

Step 2. Now we pass to the more general case and assume that y1k ∈ H . The proof
is analogous to Step 2 in the proof of Theorem 6 in [38]. However, we provide the
proof, since we deal with more general case involving a sum of two subdifferentials.
Since V ⊂ H is dense, we can find a sequence {y1n

k } ⊂ V such that y1n
k → y1k in H ,

as n → ∞ (index k is now fixed). Consider a solution yn of the problem (P)k when
y1k is replaced by y1n

k , i.e., a solution of the following problem

⎧⎪⎨
⎪⎩

y′′
n (t) + (Ak y′

n)(t) + (Bk yn)(t)+
ι∗∂ J 1

k (ιy′
n(t)) + ι∗∂ J 2

k (ιyn(t)) � fk(t) + (Cku)(t) a.e. t ∈ (0, T )

yn(0) = y0k , y′
n(0) = y1n

k , yn ∈ Y .

(P)n
k
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The existence of yn , for n ∈ N follows from the first part of the proof. We have

y′′
n (t)+ Ak(t, y′

n(t))+Bk yn(t)+ι∗ξn(t)+ι∗ζn(t)= fk(t)+(Cku)(t) for a.e. t ∈(0, T ),

(29)

or equivalently

y′′
n + Ak y′

n + Bk yn + ι∗ξn + ι∗ζn = fk + Cku in V∗.

where
ξn(t) ∈ ∂ J 1

k (ιy′
n(t)) for a.e. t ∈ (0, T ) (30)

and
ζn(t) ∈ ∂ J 2

k (ιyn(t)) for a.e. t ∈ (0, T ). (31)

From Lemma 13, since all terms in the right-hand side of (6) excluding y1k do not
depend on n, we have

‖yn‖p
C(0,T ;V )

+ ‖y′
n‖2C(0,T ;H) + ‖y′

n‖p
V + ‖y′′

n ‖q
V∗ ≤ C(1 + |y1n

k |2).

Since {y1n
k } is bounded in H also {yn} and {y′

n} are bounded inV andWpq , respectively.
So passing to a subsequence, we have

yn
	−→y. (32)

We will show that y is a solution of the problem (P)k . From (32) we also have yn → y
weakly inWpq . From the continuity of embeddingWpq ⊂ C(0, T ; H) it follows that
yn(0) → y(0) weakly in H and since yn(0) = y0k for all n ∈ N we conclude that
y(0) = y0k . Moreover, y′

n(0) → y′(0) weakly in H and since y′
n(0) = y1n

k → y1k
strongly in H , it follows that y′(0) = y1k . From Lemma 16 and (32), it follows that

Bk yn → Bk y weakly in V∗. (33)

Now we pass to the limit in (30) and (31). Since yn → y and y′
n → y′ weakly in

Wpq and ι : Wpq → Z is compact it follows that ιyn → ιy and ιy′
n → ιy′ strongly in

Z . From growth conditions H(J 1)(i) and H(J 2)(i), it follows that {ξn} and {ζn} are
bounded in Z∗. From the reflexivity of this space, we have for a subsequence ξn → ξ

and ζn → ζ weakly in Z∗. From the convergence theorem of Aubin and Cellina (see
[4]), we have

ξ(t) ∈ ∂ J 1
k (ιy′(t)) and ζ(t) ∈ ∂ J 2

k (ιy(t)) for a.e. t ∈ (0, T ).

Since ι∗ : Z∗ → V∗ is linear and continuous, and hence weakly continuous, we have

ι∗ξn → ι∗ξ and ι∗ζn → ι∗ζ weakly in V∗. (34)
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In order to pass to the limit in the term Ak y′
n , we will show that

lim sup
n→∞

〈〈Ak y′
n, y′

n − y′〉〉V∗×V ≤ 0 (35)

and use Lemma 15 (e). Since limn→∞〈〈 fk + Cku, y′
n − y′〉〉V∗×V = 0 and

limn→∞〈〈ξn + ζn, ιy′
n − ιy′〉〉Z∗×Z = 0 from (29), we have

lim sup
n→∞

〈〈Ak y′
n, y′

n − y′〉〉V∗×V

≤ lim sup
n→∞

〈〈y′′
n , y′ − y′

n〉〉V∗×V + lim sup
n→∞

〈〈Bk yn, y′ − y′
n〉〉V∗×V . (36)

We calculate

lim sup
n→∞

〈〈y′′
n , y′ − y′

n〉〉V∗×V = lim sup
n→∞

〈〈y′′
n − y′′, y′ − y′

n〉〉V∗×V

= 1

2
lim sup

n→∞
(|y′

n(0)− y′(0)|2 −|y′
n(T )− y′(T )|2) ≤ 1

2
lim

n→∞ |y1n
k − y1k |2 = 0. (37)

On the other hand, by the Lemma 16 (f), we have

lim sup
n→∞

〈〈Bk yn, y′ − y′
n〉〉V∗×V = lim

n→∞〈〈Bk y, y′ − y′
n〉〉V∗×V

+ lim sup
n→∞

〈〈Bk yn − Bk y, y′ − y′
n〉〉V∗×V ≤ 0. (38)

From (36) to (38), we obtain (35), so we conclude that

Ak y′
n → Ak y′ weakly in V∗. (39)

From (32), (33),(34) and (39) it follows that y solves (P)k . The proof is complete.

Theorem 19 If, in addition to the assumptions of the Theorem 14, we admit p = 2
and for k ∈ N̄:

(ak(t, x, ξ) − ak(t, x, η), ξ − η)RN ≥ b1|ξ − η|2 a.e. in Q for all ξ, η ∈ R
N,

(40)

〈η1 − η2, z1 − z2〉Z∗×Z ≥ −b2‖z1 − z2‖2 for all zi ∈ Z , ηi ∈ ∂ J 1
k (zi ), i = 1, 2,

(41)

J 2
k ∈ C2(Z) with ‖D2 J 2

k (z)‖L(Z;Z∗) ≤ b3 for all z ∈ Z ,

(42)

with b1, b2, b3 > 0 and b1 > b2‖ι‖2, then the solution of the problem (P)k is unique.

The proof of Theorem 19 is based on a standard technique and follows from a simple
direct calculation and application of the Gronwall lemma.
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3.4 Sensitivity of Solution Sets for (P)k

In this section we provide the result of the sensitivity of the solution set of the second
order subdifferential inclusion.

We assume that u ∈ U ⊂ U × V × H , where U is the set of admissible controls.
Moreover, for a sequence of controls {uk} ⊂ U, k ∈ N we say that (uk, y0k , y1k ) =
uk

s−U−→ u∞ = (u∞, y0∞, y1∞) if uk
s−U−→ u∞, y0k

s−V−→ y0∞, and y1k
s−H−→ y1∞, as k → ∞.

Let us define the multivalued mappings Sk : U → 2Y , which assign to the control
u ∈ U the set of all solutions of the problems (P)k corresponding to this control, where
k ∈ N̄. First we observe that under the hypotheses of Theorem 14, the mappings Sk

have nonempty values. We prove the following theorem.

Theorem 20 Under the hypotheses H(A), H(B), H(J 1), H(J 2), H(C), (H0) and

(H1), from any sequence {yk}, k ∈ N such that yk ∈ Sk(uk) where uk
s−U−→u∞, one can

extract a convergent subsequence ykn

	−→y∞, where y∞ ∈ S∞(u∞), that is

K (	 − Y) − lim supSk(uk) ⊂ S∞(u∞) for every uk
s−U−→ u∞. (43)

Moreover, if the limit problem (P)∞ has a unique solution (for example, if the assump-
tions of Theorem 19 hold for k = ∞), then we also have

S∞(u∞) ⊂ K (	 − Y) − lim inf Sk(uk), (44)

so in this case Sk(uk)
K (	−Y)−→ S∞(u∞), as k → ∞.

Before we give the proof of the Theorem 20, we prove a lemma, which to the best
of our knowledge is a new result.

Lemma 21 Let Z be a separable and reflexive Banach space, and let Jk : Z → R

k ∈ N̄ be a family of locally Lipschitz functions such that ||∂ Jk(z)||Z∗ ≤ c(1+||z||p−1
Z )

for all z ∈ Z with some c > 0 independent of k and

K (s − Z , w − Z∗) − lim sup
k→∞

Gr ∂ Jk ⊂ Gr ∂ J∞. (45)

Then

a) for every sequence zk → z strongly in Z and for every v ∈ Z we have

lim sup
k→∞

J 0
k (zk; v) ≤ J 0∞(z; v), (46)

b) for all sequences zk → z strongly in Z and ξk → ξ weakly in Z∗ such that
ξk(t) ∈ ∂ Jk(zk(t)) for a.e. t ∈ (0, T ) we have ξ(t) ∈ ∂ J∞(z(t)) for a.e. t ∈ (0, T ).
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Proof For the proof of a) assume that for a subsequence J 0
k (zk; v) → α ∈ R (note that

due to the growth condition the case α = ∞ is excluded here). It is enough to show,
that α ≤ J 0∞(z; v). From the basic properties of the Clarke subdifferential, we have

J 0
k (zk; v) = max{〈ξ, v〉 : ξ ∈ ∂ Jk(zk)} = 〈ξk, v〉 for k ∈ N

where ξk ∈ ∂ Jk(zk). From the growth condition, since {zk} is bounded, it follows
that for a subsequence, we have ξk → ξ weakly in Z∗ for some ξ ∈ Z∗. Hence
〈ξk, v〉 → 〈ξ, v〉 = α. From (45) we have ξ ∈ ∂ J∞(z), so α = 〈ξ, v〉 ≤ J 0∞(z; v) and
the proof of part a) is complete.
Now we pass to the proof of b). Fix v ∈ Z . Since zk → z strongly in Z , then using
Proposition 2.2.41 in [23] for a subsequence zkn , we have zkn (t) → z(t) for a.e.
t ∈ (0, T ) with n → ∞, and for all n ≥ 1, ‖zkn (t)‖Z ≤ h(t) for a.e. t ∈ (0, T ) with
some h ∈ L p(0, T ). From the growth condition, we have

〈ξkn (t), v(t)〉Z∗×Z ≤ ‖ξkn (t)‖Z∗‖v(t)‖Z

≤ c(1 + ‖zkn (t)‖p−1
Z )‖v(t)‖Z ≤ c(1 + h(t)p−1)‖v(t)‖Z .

Since the last function belongs to L1(0, T ), we can use the Fatou lemma and obtain

lim sup
k→∞

T∫

0

〈ξkn (t), v(t)〉 dt ≤
T∫

0

lim sup
k→∞

〈ξkn (t), v(t)〉 dt. (47)

Since ξk → ξ weakly in Z∗, we have

T∫

0

〈ξ(t), v(t)〉dt = lim
n→∞

T∫

0

〈ξkn (t), v(t)〉dt. (48)

Applying the assertion a) of the Lemma as well as (47), (48), and the definition of the
Clarke subdifferential, we obtain

T∫

0

〈ξ(t), v(t)〉dt ≤
T∫

0

lim sup
n→∞

〈ξkn (t), v(t)〉 dt

≤
T∫

0

lim sup
n→∞

J 0
kn

(zkn (t); v(t)) dt ≤
T∫

0

J 0∞(z(t); v(t)) dt.

We have shown that

T∫

0

(
J 0∞(z(t); v(t)) − 〈ξ(t), v(t)〉

)
dt ≥ 0 for all v ∈ Z. (49)
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Next, wewill show that for all v ∈ Z , the integrand in (49) is nonnegative for a.e. t ∈
(0, T ). Indeed, to the contrary, suppose that for some v ∈ Z , we have J 0∞(z(t); v(t))−
〈ξ(t), v(t)〉 < 0 for all t ∈ N ⊂ (0, T ), where N is of positive measure. Define

w(t) =
{

v(t) for t ∈ N ,

0 for t ∈ (0, T ) \ N .

Then

T∫

0

(
J 0∞(z(t);w(t)) − 〈ξ(t), w(t)〉

)
dt =

∫

A

(
J 0∞(z(t); v(t)) − 〈ξ(t), v(t)〉

)
dt < 0,

and, since w ∈ Z, we have a contradiction with (49).
Now, by the separability of Z , consider a countable dense subset {vn}∞n=1 of Z .

Taking in place of v in (49), the constant functions wn ∈ Z defined by wn(t) = vn

for t ∈ (0, T ), we observe that the inequality J 0∞(z(t); vn) − 〈ξ(t), vn〉 ≥ 0 does not
hold on the set Nn ⊂ (0, T ) of measure zero. Now, we have 〈ξ(t), vn〉 ≤ J 0∞(z(t); vn)

for all n ∈ N and t belonging to the set of full measure (0, T ) \ ⋃∞
n=1 Nn . Since

J 0∞(z(t); ·) is locally Lipschitz and hence continuous (see Proposition 2.1.1 in [10]),
then, by density, we have 〈ξ(t), v〉 ≤ J 0∞(z(t); v) for all v ∈ Z on the set of full
measure and the assertion follows. ��
Proof (of Theorem 20). First observe that from Theorem 14, it follows that the sets
Sk(uk) are nonempty for k ∈ N̄. Suppose that yk ∈ Sk(uk) for k ∈ N. From Lemma
13, it follows that yk is bounded in C(0, T ; V ), y′

k is bounded in C(0, T ; H) ∩ V
and y′′

k is bounded in V∗. Hence, for a subsequence, we have yk
	−→y∞. It remains to

show that y∞ ∈ S∞(u∞). In a standard way, from yk
	−→y∞, it follows that yk(0) →

y∞(0) weakly in V and y′
k(0) → y′∞(0) weakly in H . Hence, from (H0), we obtain

y∞(0) = y0∞ and y′∞(0) = y1∞.
From the fact that yk ∈ Sk(uk), it follows that for a.e. t ∈ (0, T ), we have

y′′
k (t) + Ak(t, y′

k(t)) + Bk yk(t) + ι∗ξk(t) + ι∗ζk(t) = fk(t) + (Ckuk)(t), (50)

where ξk(t) ∈ ∂ J 1
k (ιy′

k(t)) and ζk(t) ∈ ∂ J 2
k (ιyk(t)) for a.e. t ∈ (0, T ). From the

growth conditions, we know that both {ξk} and {ζk} are bounded in Z∗, so for a
subsequences numerated by k again, we have

ξk → ξ and ζk → ζ weakly in Z∗ as k → ∞. (51)

Moreover, since yk → y∞ and y′
k → y′∞ both weakly in Wpq , and the Nemytskii

operator ι : Wpq → Z is compact, we have

ιyk → ιy∞ and ιy′
k → ιy′∞ strongly in Z as k → ∞. (52)
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From (51), (52) and Lemma 21, we obtain

ξ(t) ∈ ∂ J 1∞(ιy′∞(t)) and ζ(t) ∈ ∂ J 2∞(ιy∞(t)) for a.e. t ∈ (0, T ). (53)

From Remark 9, we may assume, possibly passing to a subsequence, that

ak(x, t, Dy′
k) → b(x, t) weakly in Lq(Q;RN ) (54)

with some b ∈ Lq(Q;RN ). Let η ∈ R
N and let�0 be an open set such that�0 ⊂⊂ �,

and let � be an open interval with � ⊂⊂ (0, T ). Let � ∈ C∞
0 (�), � ∈ C∞

0 ((0, T ))

be such that �|�0 = 1 and �|� = 1. We define

v(x, t) = �(x)�(t)(η, x)RN for all (x, t) ∈ � × [0, T ].

Let us consider a sequence {vk} ⊂ Wpq of solutions to the following auxiliary problem

v′
k − div ak(x, t, Dvk) = v′(t) − div a∞(x, t, Dv) (55)

vk(0) = 0. (56)

By H(A), we have
vk → v weakly in Wpq (57)

ak(x, t, Dvk) → a∞(x, t, η) weakly in Lq(�0 × �;RN ). (58)

Let ϕ ∈ C∞
0 (�0 × �), ϕ ≥ 0. The monotonicity of ak(x, t, ·) implies

∫

�0×�

(ak(x, t, Dy′
k) − ak(x, t, Dvk), Dy′

k − Dvk)ϕ dxdt ≥ 0. (59)

From (50) and (55), we have

y′′
k − v′

k − div (ak(x, t, Dy′
k) − ak(x, t, Dvk)) + Bk yk + ῑ∗ξk + ῑ∗ζk

= fk + Ckuk − v′ + div a∞(x, t, Dv).

Multiplying the last equality by (y′
k − vk)ϕ and integrating by parts, we obtain

∫

�0×�

(ak(x, t, Dy′
k) − ak(x, t, Dvk), Dy′

k − Dvk)ϕ dxdt

= −
∫

�0×�

(ak(x, t, Dy′
k) − ak(x, t, Dvk), y′

k − vk)Dϕ dxdt

−〈y′′
k − v′

k, (y′
k − vk)ϕ〉V∗×V − 〈ξk + ζk, ῑ(y′

k − vk)ϕ〉Z∗×Z
+〈 fk + Ckuk − v′ + div a∞(x, t, Dv) − Bk yk, (y′

k − vk)ϕ〉V∗×V . (60)
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We claim that

〈y′′
k − v′

k, (y′
k − vk)ϕ〉V∗×V → 〈y′′ − v′, (y′ − v)ϕ〉V∗×V , as k → ∞. (61)

Indeed, let zk = y′
k − vk and z = y′ − v. We know that zk → z weakly in Wpq and

also strongly inH. Since

〈z′
k, zkϕ〉V∗×V = −1

2
(zk, zkϕ

′)H,

we have

|(zk, zkϕ
′)H − (z, zϕ′)H| ≤ ‖zk‖H‖(zk − z)ϕ′‖H + ‖zk − z‖H‖zϕ′‖H → 0,

which proves (61). Since the embedding Wpq ⊂ L p(Q) is compact, and moreover,

ι : Wpq → Z is compact operator, from (57) and yk
	−→y∞, we conclude that

vk → v and y′
k → y′∞ strongly in L p(Q), (62)

ιvk → ιv strongly in Z. (63)

From (54), (58) and (62), we obtain

∫

�0×�

(ak(x, t, Dy′
k) − ak(x, t, Dvk), y′

k − vk)Dϕ dxdt

→
∫

�0×�

(b(x, t) − a∞(x, t, η), y′∞ − v)Dϕ dxdt, (64)

and from (51), (52) and (63)

〈ξk + ζk, ῑ(y′
k − vk)ϕ〉Z∗×Z → 〈ξ + ζ, ῑ(y′∞ − v)ϕ〉Z∗×Z (65)

with k → ∞. Using (61), (64), (65), H(B), H(C) and (H0), we pass to the limit in
(60) and we obtain

∫

�0×�

(ak(x, t, Dy′
k) − ak(x, t, Dvk), Dy′

k − Dvk)ϕ dxdt

→ −
∫

�0×�

(b(x, t) − a∞(x, t, η), y′∞ − v)Dϕ dxdt

−〈y′′∞ − v′, (y′∞ − vk)ϕ〉V∗×V − 〈ξ + ζ, ῑ(y′∞ − v)ϕ〉Z∗×Z
+〈 f∞ + C∞u∞ − v′ + div a∞(x, t, Dv) − B∞y∞, (y′∞ − v)ϕ〉V∗×V

= 〈−y′′∞ + div a∞(x, t, Dv) − B∞y∞ − ῑ∗ξ − ῑ∗ζ + f∞ + C∞u∞, (y′∞ − v)ϕ〉V∗×V

−
∫

�0×�

(b(x, t) − a∞(x, t, η), y′∞ − v)Dϕ dxdt = I1 + I2. (66)
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On the other hand, taking the V∗
weak-limit in (50), we get

y′′∞ − div b(x, t) + B∞y∞ + ῑ∗ξ + ῑ∗ζ = f∞ + C∞u∞. (67)

Inserting the last equality to I1 and integrating by parts, we have

I1 =
∫

�0×�

(b(x, t) − a∞(x, t, η), (y′∞ − v)Dϕ)dxdt

+
∫

�0×�

(b(x, t) − a∞(x, t, η), (Dy′∞ − Dv)ϕ)dxdt.

Hence, and from (60) we get in the limit

∫

�0×�

(b(x, t) − a∞(x, t, η), (Dy′∞ − η)ϕ)dxdt ≥ 0.

Denoting g(x, t) = (b(x, t) − a∞(x, t, η), (Dy′∞ − η)) ∈ L1(�0 × �), we can take
a family of mollifier kernels ϕε centered in (y, s) ∈ �0 × � in place of ϕ and get,
setting g(x, t) = 0 outside � × (0, T )

gε(y, s) =
∫

�0×�

g(x, t)ϕε(y − x, s − t) dxdt ≥ 0.

Since gε → g in L1(�0 × �), for a subsequence, we know that gε(x, t) → g(x, t)
for a.e. (x, t) ∈ �0 × �. Hence, we have

(b(x, t) − a∞(x, t, η), (Dy′∞ − η)) = g(x, t) ≥ 0 a.e. in �0 × �, for all η ∈ R
N ,

and hence also a.e. in Q for every η ∈ R
N . Let w ∈ R

N and λ > 0. Taking η =
Dy′∞ + λw we obtain

(b(x, t) − a∞(x, t, Dy′∞ + λw),w) ≥ 0 a.e. in Q.

Recalling that a∞(x, t, ·) is continuous (by the definition of classM(m0, m1, m2, α)),
we pass to the limit with λ → 0 in the last inequality and obtain

(b(x, t) − a∞(x, t, Dy′∞), w) ≥ 0 a.e. in Q.

Ifwe replacew by−wwededuce thatb(x, t) = a∞(x, t, Dy′∞) a.e.in Q. This together
with (67) implies that y∞ ∈ S∞(u∞). The proof of (43) is completed. Moreover, if
S∞(u∞) is a singleton, than it follows that the whole sequence yk converges to y∞
and hence (44) follows. ��
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4 �-Convergence of Cost Functionals

In this section we state conditions which guarantee the suitable �-convergence of the
cost functionals in the control problem (C P)Rk .

In the sequel we replace H(C) with the following, stronger, assumption:
H(C)(1) : Ck ∈ L(U , Lq(Q)), k ∈ N̄ are uniformly bounded and Ck

c−→ C∞.
We consider the following costs

Fk(u, y) := F (1)
k (y, y′) + F (2)

k (u) + F (3)
k (y0) + F (4)

k (y1), (68)

for y ∈ Y, u ∈ U , y0 ∈ V, y1 ∈ H,

where

F (1)
k (y, y′) =

∫

Q

F (1)
k (x, t, y(x, t), y′(x, t)) dtdx, (69)

F (2)
k (u) =

∫

Q

F (2)
k (x, t, (Cku)(x, t)) dtdx, (70)

F (3)
k (y0) =

∫

�

F (3)
k (x, y0(x), Dy0(x)) dx . (71)

F (4)
k (y1) =

∫

�

F (4)
k (x, y1(x)) dx . (72)

In the following hypotheses the conditions (i), (ii), and (iii) hold uniformly with
respect to k ∈ N̄.

H(F (1)) :
(i) F (1)

k : Q × R × R → R is measurable in (x, t) ∈ Q, F (1)
k (x, t, 0, 0) ∈ L p(Q);

(ii) |F (1)
k (x, t, z1, w1) − F (1)

k (x, t, z2, w2)|

≤ C1

(
(1 + |z1|p−1)|z1 − z2| + (1 + |w1|p−1)|w1 − w2|

)
a.e. (x, t) ∈ Q,

for all (z1, z2, w1, w2) ∈ R
4 for some C1 > 0;

(iii) at least one of the following two conditions holds

(iiia) F (1)
k (·, ·, z, w)

w−L1(Q)−→ F (1)∞ (·, ·, z, w) for all (z, w) ∈ R
2 and |F (1)

k (x, t, z, w)|
≤ C2 for all (z, w) ∈ R

2 a.e. (x, t) ∈ Q with some C2 > 0;
(iiib) F (1)

k (x, t, z, w) −→ F (1)∞ (x, t, z, w) for all (z, w) ∈ R
2 a.e. (x, t) ∈ Q;

H(F (2)) :
(i) F (2)

k : Q × R → R is measurable in (x, t) ∈ Q, convex in z ∈ R;

(ii) |F (2)
k (x, t, z)| ≤ C3(1 + |z|q) for all z ∈ R a.e. in Q with some C3 > 0;

(iii) at least one of the following two conditions holds
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(iiia) F (2)
k (·, ·, z)

w−L1(Q)−→ F (2)∞ (·, ·, z) for all z ∈ R and |F (2)
k (x, t, z)| ≤ C4 for all

z ∈ R a.e. (x, t) ∈ Q with some C4 > 0;
(iiib) F (2)

k (x, t, z) −→ F (2)∞ (x, t, z) for all z ∈ R and a.e. (x, t) ∈ Q;

H(F (3)) :
(i) F (3)

k : � × R
N+1 → R is measurable in x ∈ �, convex in z ∈ R

N+1;

(ii) |F (3)
k (x, z)| ≤ C5(1 + |z|p) for all z ∈ R

N+1 a.e. in � with some C5 > 0;
(iii) at least one of the following two conditions holds

(iiia) F (3)
k (·, ·, z)

w−L1(Q)−→ F (3)∞ (·, ·, z) for all z ∈ R
N+1 and |F (3)

k (x, t, z)| ≤ C6 for
all z ∈ R

N+1 a.e. (x, t) ∈ Q with some C6 > 0;
(iiib) F (3)

k (x, t, z) −→ F (3)∞ (x, t, z) for all z ∈ R
N+1 and a.e. (x, t) ∈ Q;

H(F (4)) :
(i) F (4)

k : � × R → R is measurable in x ∈ �, convex in z ∈ R;

(ii) F (4)
k (x, z) ≤ C7(1 + |z|2) for all z ∈ R a.e. in � with some C7 > 0;

(iii) at least one of the following two conditions holds

(iiia) F (4)
k (·, ·, z)

w−L1(Q)−→ F (4)∞ (·, ·, z) for all z ∈ R and |F (4)
k (x, t, z)| ≤ C8 for all

z ∈ R a.e. (x, t) ∈ Q with some C8 > 0;
(iiib) F (4)

k (x, t, z) −→ F (4)∞ (x, t, z) for all z ∈ R and a.e. (x, t) ∈ Q;

Proposition 22 For every fixed k ∈ N̄, under the regularity assumptions (i), (ii) of
H(F (1)), H(F (2)), H(F (3)) and H(F (4)), respectively, we have

(j) F (1)
k (·) is s − W 1,p(0, T ; L p(�)) so also sequentially 	 − Y continuous,

(jj) F (2)
k (·) is s − U continuous,

(jjj) F (3)
k (·) is s − V continuous,

(jv) F (4)
k (·) is s − H continuous.

Also, under the convergence conditions (iii) of H(F (1)), H(F (2)), H(F (3)) and
H(F (4)), respectively, we have

F (1)
k (y)

c−→F (1)∞ (y),

F (2)
k (u)

�(s − U−)−→ F (2)∞ (u),

F (3)
k (y0)

�(s − W 1,p(�)−)−→ F (3)∞ (y0),

F (4)
k (y1)

�(s − H−)−→ F (4)∞ (y1),

and for functional Fk(u, y0, y1, y) defined by (68), we obtain F∞(u, y0, y1, y)

= �seq
(
s − U−, s − V −, s − H−, 	 − Y

)
lim

k→∞Fk(u, y0, y1, y).
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Proof For the proof of ( j) assume that yn → y strongly in W 1,p(0, T ; L p(�)).
This means that yn → y strongly in L p(Q) and y′

n → y′ strongly in L p(Q). From
H(F (1))(i i), we obtain

|F (1)
k (y) − F (1)

k (yn)|
≤

∫

Q

|F (1)
k (x, t, y(x, t), y′(x, t)) − F (1)

k (x, t, yn(x, t), y′
n(x, t))| dxdt

≤ C1

⎛
⎜⎝

∫

Q

2q−1(1 + |y(x, t)|p) dxdt

⎞
⎟⎠

1
q

‖yn − y‖L p(Q)

+ C1

⎛
⎜⎝

∫

Q

2q−1(1 + |y′(x, t)|p) dxdt

⎞
⎟⎠

1
q

‖y′
n − y′‖L p(Q), (73)

and the assertion follows. The continuity of F (i)
k for i = 2, 3, 4 follows from the

fact that convex and locally bounded functions are continuous and from Carathéodory
Continuity Theorem (see Example 1.22 in [12]).

To prove the continuous convergence of F (1)
k , assume that yk → y in 	. We have

|F (1)
k (yk) − F (1)∞ (y)| ≤ |F (1)

k (yk) − F (1)
k (y)| + |F (1)

k (y) − F (1)∞ (y)|.

The first term on the right hand side tends to zero uniformly in k by (73). To prove the
convergence of the second term, we proceed separately for the cases H(F (1))(iiia)
and H(F (1))(iiib). For the proof in the first case choose y ∈ Y to get

|F (1)
k (y) − F (1)∞ (y)| ≤

∫

Q

|F (1)
k (x, t, y(x, t), y′(x, t))

−F (1)∞ (x, t, y(x, t), y′(x, t))| dtdx .

By the Luzin theorem we know that for every ε > 0 we can find a compact set K ⊂ Q
such that y(x, t) and y′(x, t) are continuous on K and μN+1(Q \ K ) < ε (where
μN+1 stands for N + 1 dimensional Lebesgue measure). Hence, we have

|F (1)
k (y) − F (1)∞ (y)| ≤ 2C2ε

+
∫

K

|F (1)
k (x, t, y(x, t), y′(x, t)) − F (1)∞ (x, t, y(x, t), y′(x, t))| dtdx .

Now the fact that the last term in above inequality can bemade arbitrarily small follows

from the convergence F (1)
k (·, ·, z, w)

w−L1(Q)−→ F (1)∞ (·, ·, z, w) for all (z, w) ∈ R
2 in

the similar way as the convergence (13) in Lemma 4.1 in [17]. The proof in the case
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H(F (1))(iiib) follows by a direct application of the Lebesgue dominated convergence
theorem. For the proof of �-convergence of F (2)

k , F (3)
k , and F (4)

k observe that these
functions are convex and locally equibounded. Hence, by Proposition 5.12 in [12], the
�-convergence is equivalent to the pointwise convergence. The pointwise convergence
follows from (iii) in the same way as for F (1). This completes the proof. ��

Now, the main result on the sensitivity of optimal control problems follows from
Proposition 5, Theorem 20, Proposition 22 and the direct method for the existence
part.

Theorem 23 Under the hypotheses H(A), H(B), H(J 1), H(J 2), H(C)(1), (H0) and
(H1) for (P)k , we admit the hypotheses H(F ( j)), j = 1, 2, 3, 4 for cost functionals
Fk(u, y0, y1, y) given by (68). Moreover, let the space of admissible controls U be
compact inU×V ×H (alternatively we can assume that sublevel sets of the functionals
F (2,3,4)

k : U → R defined as F (2,3,4)
k (u) = F (2)

k (u) + F (3)
k (y0) + F (4)

k (y1) are
compact). Then

(i) For every k ∈ N̄ the problem (C P)Rk has at least one optimal solution y∗
k ∈

Sk(u∗
k , y0∗k , y1∗k ), mk := Fk(u∗

k , y0∗k , y1∗k , y∗
k ) being its minimal value.

(ii) If the limit (original) problem (C P)R∞ has the “uniqueness of solution prop-
erty”, i.e., for all u ∈ U , S∞(u) = {y∞(u)} (see Theorem 19), then the sequence
(u∗

k , y0∗k , y1∗k , y∗
k ) has a cluster point and, moreover, every cluster point to this

sequence is an optimal solution to the problem (C P)R∞ , i.e.,

(u∗
kn

, y0∗kn
, y1∗kn

, y∗
kn

)
(s−U)×(s−V )×(s−H)×(	−Y)−→ (u∗∞, y0∗∞ , y1∗∞ , y∗∞) and

y∗∞ ∈ S∗∞(u∗∞, y0∗∞ , y1∗∞ ).

(iii) We also have mk → m∞ as k → ∞.

5 Examples

In this section we give examples of particular operators and functionals, for which the
results of the paper are applicable. Let p = 2 and V = H1

0 (�). We provide examples
for the following hypotheses

H(A) Note that the operators Ak , k ∈ N̄, are given in the explicit form in the assump-
tion H(A). Svanstedt (see Theorem 3.1 in [49]) proves that any sequence

{ak}∞k=1 such that ak ∈ M has a subsequence such that ak
PG−→ a∞ with some

a∞ ∈ M.
H(B) The condition H(B)(ii) holds for the operators defined by

〈Bk y, v〉 =
∫

�

gk(x)y(x)v(x) + (∇ y(x) · hk(x))v(x)dx,

for y, v ∈ V, k ∈ N̄,
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where gk → g∞ in L∞(�) and hk → h∞ in W 1,∞(�;RN ). Moreover,
if hk ≡ 0 and gk ≥ 0, then also the condition H(B)(i) holds. Note that
the second order operator (for example the Laplace operator) is not allowed
here.

H(J) Let j : R → R be a locally Lipschitz function such that ξr ≥ 0 for
all r ∈ R and ξ ∈ ∂ j (r), and |ξ | ≤ C(1 + |r |p−1) for all r ∈ R and
ξ ∈ ∂ j (r). For example, we can put j (r) = |r |. We define Z = L p(�)

and J : Z → R as J (z) = ∫
�

j (z(x)) dx . We take a sequence of mollifier
kernels �k = k�(kx), where � ∈ C∞(R), supp(�) ⊂ [−1, 1] and �(x) ≥ 0
for all x ∈ R. We define jn(r) = ∫

R
�n(s) j (r − s) ds, and the associated

functional given by Jn(z) = ∫
�

jn(z(x)) dx . A straightforward computation
proves that J and Jn satisfy H(J 1)(i)-(ii) and H(J 2)(i) uniformly in n ∈ N.
To show that H(J 1)(iii) and H(J 2)(ii) hold, we observe that by the compu-
tation analogous to the one given in the proof of Theorem 3.1 in [30], we
have

K − lim sup
k→∞

Gr j ′k ⊂ Gr ∂ j.

Using Theorem 3 in [52], we recover H(J 1)(iii) and H(J 2)(ii). Note that
Theorem 1 of Zolezzi in [52] formulates abstract conditions which assure that
H(J 1)(iii) and H(J 2)(ii) hold.

H(C) Note that H(C) holds provided Cku → C∞u strongly in V∗ for all u ∈ U
and Ck ∈ L(U ,V∗) are uniformly bounded. Let U = R

M , M ∈ N and
for u ∈ U , we denote u = (u1, . . . , uM ). Define Cku = ∑M

i=1 uiw
k
i ,

where wk
i ∈ V∗ for i = 1, . . . , M and k ∈ N̄ are such that wk

i →
w∞

i strongly in V∗ for all i = 1, . . . , M . Then the required convergence
holds.

H(F) We give example of the sequence of functionals F (1)
k , with k ∈ N, that satisfy

H(F (1)). Note that corresponding examples that satisfy H(F (2)) − H(F (4))

can be constructed analogously. Let zk ∈ L p(Q) for k ∈ N be such that
zk(x, t) → z∞(x, t) for a.e. (x, t) ∈ Q and wk ∈ L p(Q) for k ∈ N be
such that wk(x, t) → w∞(x, t) for a.e. (x, t) ∈ Q. Define F (1)

k (x, t, z, w) =
|z − zk(x, t)| + |w − wk(x, t)|. Then H(F (1)) (i)–(ii) and (iiib) obviously
hold.
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