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1. AI techniques for short term energy consumption forecasts

The prediction systems based on artificial intelligence are significant part
of working systems which forecast electrical load in short term. Among them
the neural, the fuzzy and the hybrid systems with the neuro-fuzzy techniques
play and important role. The mentioned Al-system types are complementary,
i.e. both have certain advantages and disadvantages which determine the
decision on usage of a certain technique in a particular context. Hybrid
systems should concentrate on extracting the strengths of components and
diminishing their weaknesses. Below several examples of systems based on
neural and fuzzy techniques working in reality are introduced and analyzed.
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Among described examples the focus is on systems supporting creation of
short term forecasts.!

1.1. Neural networks in forecasting

Classical concepts on neural networks offer at least two solutions support-
ing the process of electrical load forecasting:

1. The layered neural networks (perceptrons) are capable of modelling the
functions which are not known a priori. The process of modelling is
based on the set of the function known values. The difficulty sticks in
the fact, that the shape of the function is not known. Even the set of
the arguments implying its fluctuations can remain unrecognized. In
addition the data representing a modelled function can contain a certain
rate of noises. Perceptron networks cope quite well with problems of
this type.

2. The Kohonen neural networks are applied as far as the pattern recog-
nition problems are concerned. In the set of historical data there are
several patterns extracted. The neural network can determine, using
the algorithms for vector similarity, whether presented pattern belongs
to the set of already recognized patterns.

The most important advantages of neural networks are:

1. The computational cost of creating a compact solution is very low, even
if the knowledge accumulated in the network is detailed and vast. The
cost of neural network work is surprisingly low especially in comparison
to the fuzzy systems with a similarly extensive knowledge base.

2. Another strong point of neural networks is reliability (because of the
distributed representation of knowledge) and greater generalization abil-
ities of the possessed knowledge.

3. Neural techniques are successfully exploited for grouping historical data
and finding similarities among them. It is not required to set a priori
the criterions, on base of which the data should be grouped. As far
as the mathematics is concerned, the neural networks try to divide the
given set of patterns using the scalar product. As a result of applica-
tion of simple tools, the majority of executed operations have simple

!Such forecasts should not reach beyond the 24 hours from the moment of creation.
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nature. In addition there is quite easy to manipulate with the degree
of knowledge minuteness.

4. Simple architecture of solutions built on Kohonen-type networks makes
a hardware implementation of such mechanisms possible. This can pos-
itively influence performance and efficiency parameters of the system.

The specification of neural networks should be finished by mentioning the
weak points of that technology:

1. The implicit knowledge representation. The information contained in
the weights vectors of the neurons decodes whole knowledge of the
network. The problem of its extraction is difficult and computationally
expensive.

2. Despite that the information is distributed in the network, the loss of
a particular neuron causes the loss of the knowledge contained in it. If
we consider network neurons as some terms, we can say that from the
moment of the neuron loss, the network fails to operate on that term.

The problems of neural network application are analyzed and discussed
in [1, 2, 4, 6].

1.2. Fuzzy prediction systems

Fuzzy systems are systems working on the grounds of a fuzzy-sets-language.
The terms describing the system environment are modelled by means of lin-
guistic variables and fuzzy sets representing their values. The language of
fuzzy sets is quite similar to the natural language, which makes the term
translation between languages easier. The natural way to create a fuzzy
system is to describe the problem with the common language and then to
translate, to formalize the description by the model consisting of fuzzy sets,
linguistic variables, fuzzy rules. On the base of knowledge collected in fuzzy
sets and rules the system conducts the process of conclusion and generaliza-
tion.

The main advantages of fuzzy systems are:

1. The possibility of formulating the solution as well as the problem de-
scription by means of rules of type I'F' —T HEN, which are built of the
natural language terms. The set of rules collected by the system can be
partially mutually contradicting. It is the consequence of the heuristic
description of the problem.
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2. The knowledge of the system is easily accessible for the user and ad-
vanced tools are not necessary to extract it. The knowledge implemen-
tation makes its analysis and management easier.

3. The prognoses and conclusions are easy to reason. A simple algorithm
is able to confirm the predictions value. The most weighting rules can
be mentioned with only less effort. These factors makes the predictions
more trustworthy.

4. The process of acquiring the knowledge does not require expensive al-
gorithms and allow to make use of the newly integrated information im-
mediately. The adaptation abilities and knowledge accessibility make
the fuzzy system a source of the new domain knowledge.

The mentioned advantages of fuzzy prediction systems, in particular the
explicit knowledge representation, are paid for by several weak points. We
have to mention the following items:

1. The great computational expense that is to be taken in order to make
use of the collected information. This expense grows dramatically to-
gether with the growth of number of rules contained in the system.

2. An important problem to be solved before the start of such system is
to secure the system before the situation in which the system cannot
recognize the presented pattern on the base of the possessed knowledge.
In this situation other mechanisms should be able to generate the pre-
diction. After analysis of such case its exhausting description should
be added to the knowledge base.

3. Another problem concerning the fuzzy-rules-systems working on tremen-
dous knowledge bases containing thousands of facts and rules is main-
taining their consistency and keeping them up to date. The facts gath-
ered in such extensive bases are very precious data source for various
trends analysis.

The readers willing to inquire into the fuzzy systems application should
necessarily consider reading [4].

1.3. Forecasts from hybrid systems

The conception of the system introduced in the following chapter makes
it necessary to focus on another type of predicting systems, i.e. the hybrids.
The systems containing components of different architectures may be very
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efficient predicators. The application of different types of hybrid systems are
analyzed in [4].

The system designed by the author of this paper is based on neural and
fuzzy components managed by a supervisor equipped with some set of tools,
mainly statistical, to evaluate the effects of component work. The positive
features of all systems, conception of which were used to build the mentioned
system, have been strengthened whereas the weaknesses have been dimin-
ished.

Main advantages of the solution are:

1. A partially explicit knowledge representation. It makes possible to ver-
ify the reasons on the base of which particular forecast is created. Such
system can generate new domain knowledge on the modelled phenom-
enon.

2. Easy accessibility of the knowledge and the possibility of its immediate
application.

3. The reliability implied by the nature of a hybrid system, in particular
by the distribution of forecasts sources. The probability of occurring
of a pattern that cannot be recognized by the system decreases signif-
icantly. In such case the hybrid generates its prediction alternatively,
for example by means of statistics.

4. Significant difference in exactness of generated forecasts. This progress
is achieved by use of a separate algorithm for control, estimate and
synthesis of the partial predictions to the one consistent forecast of
the system. This mechanism is mainly supported by simple statistical
tools.

It is well known that the hybrid system is as weak as its weakest compo-
nent. This principle is fully confirmed by the case of the described hybrid. Its
disadvantages are to be conducted from the weak points of its components.
Here the following points must be stressed:

1. Computational expensiveness on generating a synthetical forecast con-
sumed mainly by the fuzzy component of the hybrid.

2. The heterogenity of a knowledge representation at different compo-
nents, which can negatively influence the possibility of its management,
analysis and comparison. Algorithms supporting one of the mentioned
tasks could occur expensive.
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1.4. Statistical methods for verification

Apart from classical concepts based on artificial intelligence effecting in
many working prognostic solutions we should mention statistics as a domain
offering a wide spectrum of tools that allow to verify the generated outcomes
er ante. A convincing example is the system introduced in the following
paragraph and the analysis of the growth of exactness as a result of use
statistic tools to verification and aggregating partial forecasts.

2. A neuro-fuzzy hybrid to forecast the energy consumption

The current paragraph aims to present the concept of a hybrid system
predicting short term energy consumption. From the side of architecture
the system remains a hybrid built from two parallel working modules. Above
them there is a supervisor module controlling the work of the components and
executing the procedures for verification and synthesis of partial forecasts.
In case of predictions exceeding the statistically probable range supervisor
decides to reject the forecasts and generate them in an alternative way.

The particular model for the entire prediction process, such as the set
of explaining variables necessary for the description of the unknown depen-
dence, was set on the base of solutions working successfully. The main factors
determining the fluctuations of the energy consumption have been chosen as
a result of the process of advanced statistical analysis of dependencies present
in the set of historical data. Already simple analysis of data on energy con-
sumption and the changes of minimal and maximal air temperature changes
discovers strong negative linear correlation between them. Table 1 contains
the registered values of McPhearson linear correlation coefficients of energy
consumption vs minimal and maximal air temperatures.?

A neural component is a one layered Kohonen-type network with 35-
dimensional input vectors. Every input vector consists of the following parts:

1. ZD(k) daily electrical load demand registered in day k.

2. ZG1(k —1),..., ZG24(k — 1) hourly electrical load demand registered
in day k — 1.

2The correlation coefficients have been computed on the data that was used for the
hybrid implementation and tests. The set of data will be precisely described in the following
paragraph.
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Tab. 1. Correlation between minimal, maximal temperature and the energy con-
sumption registered in the test data set

Year McPhearson corr. coefficient McPhearson corr. coefficient
max temperature vs energy cons. | min temperature vs energy cons.

2002 —0.86 —0.84

2003 —0.86 —0.83

3. TMin(k), TMax(k), TMin(k — 1), TMax(k — 1) denote the mini-
mal and maximal temperature in the day k as well as the forecast for
minimal and maximal temperature for the day k.

4. D1(k),..., D6(k) the set of variables decoding a particular weekday.
For example if tuesday is to be decoded then all variables apart from
D2 are zero. The value of D2 is one.

The form of data accepted by the fuzzy system looks different. Generally
speaking they have to be aggregated before they are passed to the rule —
processing — engine.

1. Variable ZD(k) denotes the daily electrical load demand in the day &
as well as the forecast of this consumption.

2. TMin(k), TMax(k), TMin(k—1), TMax(k —1) denote the minimal
and maximal temperature in the day k — 1 as well as the forecast for
minimal and maximal temperature for the day k.

3. DT(k) variable describing the weekday, taking values from the set
{1,..., 7}, for the present day of week.

A fuzzy rule engine receives the input vectors in the following form
(ZD(k — 1), TMin(k — 1), TMax(k — 1), TMin(k), TMax(k), DT (k))

and tries by means of collected knowledge to match them with to one of
already known patterns.

The work of a hybrid system starts with the phase, in which the neural
network learns to recognize the patterns of the form: 34 explaining variables
defined above, one variable explained denoting the typical daily electrical
load for the defined context. Here we have to stress the following point that
distinguishes the process of learning from the real-time work. In the learning
phase we know exactly the whole pattern, including even its last component
(forecasted daily electrical load demand). In the reality we deal with missing
patterns, because we only know the context and we have to guess the forecast.
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That is the reason, why we have to set an initial forecast in an alternative
way. At this point we are supported by statistics.

In the proces of learning the network is built step by step, starting from a
single neuron and adding the new ones when necessary. Let us explain when
creating a new neuron is reasoned. It seems that a new neuron should be
added if none of the existing ones has reacted to the presented pattern strong
enough. In order to investigate the case of adding a new neuron, let us make
a short digression.

We want the network to classify the set of data. The output of such
process should contain the certain number of clusters, i.e. groups of similar
patterns. Clusters can be represented as centroids of such groups. From the
mathematical point of view we can consider clusters as some subsets of the
unit sphere in a fixed n-dimensional linear subspace of patterns. We must
now understood what significance the metric size of the cluster has. The
bigger the maximal allowable diameter of these subsets is, the less clusters
are likely to be created and the more heterogenous their contents becomes.
As a result the analysis of particular classes is more difficult. So we should
choose the diameter of the clusters in such a way, that their predictable
contents becomes as homogenous and easily characterizable as possible. The
maximal diameter of the cluster should be the parameter of the learning
process.

Returning to the necessity of adding a new pattern, it is the case when
the presented pattern, considered as a vector from the n-dimensional unit
sphere, lays in a bigger distance from the centroids of all groups than the
maximal allowed cluster diameter. Then it becomes impossible to assign any
cluster without breaking the constraint of the maximal cluster diameter. The
only way out of the situation is to create a new class corresponding to the
current pattern. The outcome of the learning process is a network containing
knowledge about all situations occurring in the test data set encoded in
recognized clusters. The number of the clusters is obviously the function of
the particular test data set and the maximal allowable cluster diameter.

After the network is learnt, we try to translate this knowledge into the
langauge of fuzzy terms and rules. Before translation the linguistic variables
and fuzzy sets should be defined. We accept the following model:

1. Linguistic variable weekday taking values of the set:

{monday, tuesday, wednesday, thursday, friday, freeday}.

2. Linguistic variables encoding climatic factors temperature_today-min/max
and temperature_yesterday_min/max taking values of the set:

{strong_negative, average negative, weak_negative,
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zero, weak_positive, average_positive, strong_positive}.

Particular fuzzy sets are defined on the closed interval [-35,35] by means
of a Gauss-type function of partity with optimized parameters. The
unit of temperature is one Celsius degree.

3. Linguistic variables describing the electrical load demand electrical_lo-
ad_today and electrical_load_yesterday taking values:

{very_small, small, average_small, normal, average_big, big, very_big}.

Again particular fuzzy sets are defined on the closed interval [110,250]
by means of a Gauss-type function of partity with optimized parame-
ters. The unit of energy consumptions is 100 MWh (Megawatthours).

In the described fuzzy system there is a classical algorithm of fuzzy rea-
soning implemented. It is based on the sequential processing of all fuzzy rules
and aggregating outcomes.

For the input vector containing the real numbers and every fuzzy rule
the firing power of the ancestor is computed. For this purpose we use the
correlation formula based on the minimum function. The other method to
compute the firing power of the ancestors is to take the product of the firing
power of all parts of the ancestor. However it leads to too big defuzzyfica-
tion of the rules, which may negatively influence the reliability of the fuzzy
system.? For every fuzzy set corresponding to the value of the linguistic vari-
able electrical_load, we cut it to the level of value of the minimal firing power
among the rule ancestor terms. Subsequently we join the cut fuzzy sets to
the one by taking the maximum operator and then the outcome is underlaid
to the process of defuzzyfication by use of a center of area formula, i.e.:

250

> infi)
i=110

250 ’

> u(i)

1=110

T =

where p is the function of partity of the defuzzyficated fuzzy set and ¢ its
domain.

In this way the system generates its forecast on the base of the input data
and the knowledge accumulated in fuzzy rules. Both components work par-
allel generating the pair of forecasts. On the base of this pair and the history

3The more defuzzyficated the rules are, the bigger is the number of cases, which the
system does not recognize (even on generalization of the collected knowledge).
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of predicting the supervising module generates the single value containing
the final forecast. Before the algorithm of synthesis is precisely described we
have to stress the following fact. Analyzing the series of the daily electrical
load demand values we can easily see that the serie is cyclic, changing in
a weekly period. The important property implied by that fact is also that
the variable containing the change on energy consumption between adjacent
days is cyclic. Let us denote the difference Ay = E, — Ey_1, where Ej, is
the daily electrical load demand in the day k. In this notation we can easily
express the obvious dependance

Et =~ Et—l + At—?- (1)

The partition of the variable A carries a piece of important information.
In particular by means of formula 1 we can estimate the interval which the
expected energy consumption value should match. We will consider the value
computed on the base of formula 1 as the initial forecast of the system and
denote it by E;. As § we will denote the maximal, assumed in advance,
expected difference between the real value of energy consumption and the
initial forecast. The forecasted value returned by one of the subsystems will
be called allowable if it is contained in the interval (E; — 9, Ey + §). Forecasts
which occur not allowable will be rejected by the supervising module.

At this point we are ready to precise the algorithm for constructing the
final forecast of the system:

1. As an initial forecast we take the value defined by use of formula 1.

2. Receiving the pair of forecasts (the neural and fuzzy one), the supervis-
ing module checks if they are allowable and then takes an appropriate
action.

(a) If both values occur not allowable then the initial forecast becomes
the final one.

(b) If the only one forecast is allowable then it should become final.

(¢) If both predictions are allowable the system should prefer the fore-
cast from the system which predicted better yesterday.

3. System’s outcomes

In the current paragraph we analyse the outcomes of the system descried
in the previous section. We also discuss the influence of the particular pa-
rameters on the system and the choice of data for the learning phase. The
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data used for tests of the implemented solution concern the electrical load
demand and air temperature changes for the area of Krakéw in years 2002
and 2003.

3.1. Discussion of parameters for reliability, efficiency and performance

We start the analysis of the system work with investigating the volume
of knowledge stored in the hybrid knowledge base. The neural component
stores its knowledge in neurons, to be more precise in their weight vectors.
In case of the fuzzy system the information is kept in form of fuzzy sets, their
partity functions and fuzzy rules. The ancestors of these rules describe the
context of a particular situation and the consequents suggest the probable
electrical load demand.

At the beginning of the system work the neural network is started. On
the grounds of its outcomes the knowledge of the fuzzy system is established.
There is the function which is capable of translating a weight vector of a
neuron to a fuzzy rule describing this situation. The function scales the
particular weight vector of the neuron,* distinguishes its parts and extracts
them. They should contain:

1. ZD(k) the likely electrical load demand in the day of forecast.

2. ZD(k — 1) the electrical load demand denoted in the previous day.

24
ZD(k—1) =) ZGi(k—1).
=1

3. The set of minimal and maximal air temperatures registered at the
previous day and the forecasted temperatures on the current day.

4. DT (k) € {1,2,3,4,5,6,7} the variable encoding the particular week-
day.

DT (k) =T(D1(k), D2(k), D3(k), DA(k), D5(k), D6(k)),

where T is a function transforming the set of variables into a one di-
mensional variable.

4The weight vectors from the network of the Kohonoen type — network have the
length 1.
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In this way the information interchange between fuzzy and neural systems
works.

The neural network operates on patterns considered as the vectors taken
of the unit sphere in a fixed n-dimensional linear subspace. This implies the
fact, that we have a good measure of the distance between them, i.e. the
angle between them. To be more precise it is enough to control the cosinus
of this angle and further the scalar product of these vectors. As a result of
the fact that both the weight vector and the input vector are taken of the unit
sphere, the scalar product of the vectors is identical with the cosinus of the
angle between them. We will impose the constraint of the maximal cluster
diameter by determining the value of the angle between the n-dimensional
vectors. The particular constraint should have the form

< v,w >= cos(L(v,w)) > a,

where v, w are considered vectors, and «a € [—1,1] is a set real number.

Before we present the table displaying the influence of the maximal cluster
diameter of a cluster on the system work, we have to explain the procedure
of choice of the elements for the test set.

Each of the input vectors containing data from the year 2002 was pre-
sented to the network from one to five times. Such construction of the test
data set was reasoned by experiments in which the patterns were presented
to the network once. Subsequently the errors made by the network were mea-
sured. The highest mistakes were made in the period of late spring, summer,
early autumn. The system made the best forecasts in late autumn, winter
and early spring. That is the reason why in the test set several copies of the
same pattern occurred. The bigger mistake was made by the network while
analyzing a particular pattern the more times it was repeated in the test data
set. Each pattern was repeated in the test data set up to five times.

Having prepared a proper test data set and determined the maximal
allowable cluster diameter, we start the network to classify the data with a
certain degree of minuteness. Table 2 presents the outcomes of the learning
process on the test data set containing approximately 1000 patterns (not
necessarily mutually different).

The number of rules created is obviously the function of the neuron num-
ber after learning phase and, in consequence, also of the maximal allowable
cluster diameter. The more fuzzy rules are contained in the fuzzy system,
the more detailed is its knowledge about the forecasted phenomena. Such
implemented fuzzy knowledge base can be the source of the new domain
facts, because the facts are represented by the terms of a natural language.
The use of knowledge in such representation does not require from the user
any special tools and almost any effort to make use of. The extraction of
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Tab. 2. Maximal allowable cluster diameter, the minuteness of collected knowledge
and the duration of the learning phase

Max. allowable The number of neurons | The duration of the
cluster diameter (rad) after learning phase learning phase (ms)

/6 2 7.187

/8 6 10.312

/10 35 19.219

/12 56 24.625

/14 67 26.375

/16 94 34.891

w/18 99 37.672

/20 115 42.625

Tab. 3. Costs of the fuzzy component of the hybrid

Average number Average Average number
of fuzzy rules | reaction time (ms) of operations
10 3638 2626
21 5635 4591
35 7712 7092
50 12444 9772
65 17017 12452
81 20346 15310
101 22732 18883

the knowledge from the learnt neural network is a quite difficult problem
requiring computationally expensive algorithms.

Returning to the knowledge contained in the fuzzy system, there is a
price to be paid for the minuteness. This price is an extreme growth on
the number of operations necessary for the outcome receival. At this point
the following fact should be stressed. The computations done by the neural
network involve much fever operations than the ones done by an even small
rule system. Concluding, the growth on computational expenses at the hybrid
system is merely due to the growth of these expenses at the fuzzy system’s
side. This is the cost of the explicit knowledge representation.

The efficiency of the fuzzy system is obviously dependent on the volume
of the system’s knowledge base. We can measure it in two ways. The first
method is to register the average reaction time on the presented patterns.
The time is counted in miliseconds (ms). Another method for analyzing the
fuzzy system efficiency is to measure the average number of operations that
are to be taken to reach the final result. In Table 3 we present the registered
values concerning the mentioned criterions.
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Tab. 4. Costs of the neural component of the hybrid

Average number Average Average number
of neurons reaction time (ms) of operations

4 7.46 310

12 10.06 970

42 17.08 3350
70 23.20 5460
86 25.48 6700
116 36.09 9070
129 36.51 10100
146 43.57 11420

To compare the registered values with the analogous values from the
neural networks we have to translate the number of the fuzzy rules on the
appropriate number of neurons. We suggest setting the quotient on 1:1. The
outcomes of the neural network are contained in Table 4.

Exact tests on existence of the dependance between the maximal clus-
ter diameter and the measured average number of operations necessary for
reaching the final result have revealed the strong linear dependance.

3.2. The exactness of the forecast

In the current paragraph we try to analyse the system’s work in terms
of exactness of generated forecasts. To be more precise we will focus on the
errors made by the systems while predicting the electrical load demand. The
interesting point is the problem of application of various methods for the
synthesis of the partial forecasts. Afterwards we check how the parameters
of the learning process influence the system’s work in the real-phase. We
have to mention such parameters as:

1. The diameter of the maximal cluster that can be created by the neural
network. The parameter is connected with the process of learning and
extracting the knowledge from the learnt neural component.

2. The diameter of the interval in which the variations of the forecasted
electrical load demand are considered allowable. The parameter is re-
sponsible for the evaluation of the generated forecast. Speaking more
precisely, before creating the forecast the supervising module deter-
mines the range in which the expected value of STLF should fit. The
interval is found by use of statistical tools. Then if the generated fore-
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cast lays in the interval, the systems decides on the construction of the
final forecast. The mentioned parameter is a maximal distance which
can exists between the initial, statistically produced forecast, and the
final one.

Before presenting the outcomes of the system we will explain the meth-
ods for the synthesis of the partial predictions to one final forecast. Let us
mention the following strategies:

1. Strategy 1. “Neural network.” In this strategy we ignore the results of
the fuzzy systems preferring the forecasts of the neural network inde-
pendently of other circumstances.

2. Strategy 2. “Fuzzy system.” In this strategy we ignore the results
of the neural network preferring the forecasts of the fuzzy component
independently of other circumstances.

3. Strategy 3. “Better yesterday, better today.” The strategy prefers the
component that turned out to guess better yesterday.

4. Strategy 4. “Weights sum” is based on the synthesis of the partial
forecasts by use of the linear function. It is easy to determine the
statistically optimal weights. Starting the system with one set of test
data we receive three series (zn)ner, (Yn)ner, (2n)ner, containing the
sequences of neural forecasts, of fuzzy forecasts and of real values for
some indexing set I. Now we classically define the function of the
average square error by means of the formula:

Err(a) == Z(zZ —azx; — (1 —a)y;)?, a€0,1].
iel
The problem of finding the best possible method for weighting the
partial forecasts is equivalent to finding the minimum of Err function

in its domain. It is easy to verify that function Err is a polynomial of
the degree two, i.e. it is of the form:

Err(a) = Aa*> + Ba + C,

where

A= Z(UC? — ziyi + v7),
iel

B =) (2zy — 2zim; — 2y} + wiwi),

icl
C = Z(ZZ - yi)Q.

icl
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Tab. 5. The exactness of a hybrid forecast with different strategies. Error statistics.
The common daily electrical load demand fluctuates between 14000 and 23000 MWh.
Variable AE denotes the sum of absolute values of differences between the real and
forecasted demand value, APE contains the relative values of these differences

Measure MAE D(AE) Max(AE) | MAPE | D(APE) | Max(APE)
/ Strategy | (100 MWh) | (100 MWh) (100 MWh)

Strat. 1. 12.7 12.3 147.4 7.44% 7.11% 66.24%
Strat. 2. 12.71 15.17 230.2 7.31% 7.88% 100%
Strat. 3. 11.68 9.90 53.17 6.91% 6.35% 37.55%
Strat. 4. 11.85 11.17 97.60 7.03% 6.97% 55.57%
Strat. 5. 6.03 6.33 38.99 3,46% 3,82% 25,71%

Since we have A > 0, then function Err takes its global minimum at
the point given by the formula:

Omin =

24 23 ier(@? — ziyi + y?)

B Sier(22iyi — 22w — 2y7 + xy;)

If this value does not lay in the interval [—1, 1], then this means that
the function reaches its minimal value on the border of the interval.
Conducting tests with the data concerning the year 2002 the minimal
value of Err function was taken for a = 0.501.

5. Strategy 5. “Strategy of allowable intervals.” It is the algorithm used
by the constructed hybrid by default. It was precisely described at the
beginning of the paragraph.

For all defined strategies we make comparisons of efficiency and exactness
of the hybrid outcomes. We make use of the classical measures offered by
statistics.

For the estimation’s of particular strategy effectiveness sake we start the
hybrid with parameters set to:

1. The maximal allowable cluster diameter measured by the bound on
s

angle ({5 rad).
2. The width of the interval of allowable variations of the variable con-
taining the energy consumption is equal to 800 MWh.

The system outcomes grouped by various strategies are contained in Table 5.

In the subsequent columns there are values of several statistics character-
izing the relative and absolute error. For each type of error measure there is
an average, standard deviation and the maximal value presented. The crucial
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Tab. 6. Exactness of the forecasts dependant on different strategies

Strategy The number of Correlation coefficient
the best answers | systems forecast vs real value
Strategy 1. 104/365 0.80
Strategy 2. 105/365 0.74
Strategy 3. 114/365 0.85
Strategy 4. 41/365 0.83
Strategy 5. 247/365 0.95

values for the description of the error function are the ones from the first two
columns.

The best results are achieved by using the strategy number five. It is
the default strategy used by the system. There is a great difference between
the default strategy and the other ones. This fact reveals the dominance
of hybrid systems based on neural, fuzzy and statistical components over
homogenous models. The algorithm of partial forecast aggregation applied
in the fifth strategy is more sophisticated than the ones used in strategies 3
and 4. It effects in the growth of efficiency and exactness of the system work.

Another fact deserves mentioning. In case of the forecast generated with
the strategy number two (the forecast created by the fuzzy system), in the
column denoting the relative prediction error occurred value 100%. This
means that the fuzzy submodule did not recognize the presented pattern at
all. The lack of appropriate rules in the knowledge database could be the
possible source of the problem. It is obviously the situation in case of which
the system should be specially secured. It must be able then to generate the
forecast in an alternative way. The hybrid architecture is already self secured
in this case, because the sources of forecasts are distributed. Despite this the
likelihood of occurring of the nonrecognizible pattern can remain nonzero.
For that reason it is suggested to use statistics to back up the emergency
cases.

As it was said in the previous paragraph the energy consumption is a
cyclic function changing with a weekly period. This allows to suspect that
also the function containing its changes should be cyclic with the same period.
This remark makes it possible to construct the initial forecast, then to verify
a priori the generated forecasts and reject them if they are less likely. As
the example of the fifth strategy shows, the application of statistics based
security mechanisms effected in great improvement of forecast’s exactness.

In Table 6 there are system’s outcomes presented. They are grouped by
use of different strategies. We analyse the number of the best answers, i.e.
the answers that turned out to be the closest to the real value of electrical
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Tab. 7. The exactness of the error function. The error partition

Strategy \ the number of an absolute
errors in interval (100 MWh) [0,10) | [10,20) | [20,30) | over 30
Strategy 1. 189 104 49 22
Strategy 2. 187 102 53 22
Strategy 3. 197 99 48 20
Strategy 4. 202 89 59 14
Strategy 5. 308 43 7 6

load demand. Such statistics can be made only ex post. Table 6 contain also
the values of the correlation coefficient of the real energy consumption value
vs the system’s forecasts created by use of a particular strategy. The values
of these coefficients explain how the changes of the real energy consumption
value influence the forecasts generated by means of a particular strategy.

As far as the number of best answers is concerned we can distinguish three
groups. The first group which consist of the fourth strategy (optimal weights)
achieved the worst outcome, i.e. under 20%. It shows that the application of
the linear functions to the synthesis of the forecast, despite simplicity, is not
always the best idea. The second group must contain the first (only a neural
network), second (only a fuzzy system) and third strategy (better yesterday,
better today) which exceed the level of 30%. The last group achieving the
best results (the rate exceeding 65%) consists only of the default strategy.

The correlation coefficients are generally high and in all cases significantly
exceed the value 0.75. It proves the existence of strong linear dependance
between the real value of energy consumption and the system’s forecasts
independently of the used aggregating algorithm. As it was easy to foresee
the best result is scored by the fifth strategy (0.95). It suggest almost ideal
linear dependence between the generated predictions and the reality.

At the end we should consider the partition of the error function under-
stood as an absolute value of the difference between the system suggestion
and the real value. It is the statistic AE which denotes this type of error.

In the case of the absolute prediction error the appropriate values are
contained in Table 7. Subsequent columns denote the number of days on
which the absolute forecast error belonged to one of the intervals [0,10),
[10,20), [20,30), [30,4+00). Again the best result is the one of the default
strategy. Dramatic differences are remarkable in each of the distinguished
intervals.

For all strategies we can easily observe that the number of errors denoted
in subsequent intervals is smaller. The character of this change is exponential.
Parameters describing the number of observations divide the set of strategies
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Tab. 8. The outcomes achieved by means of different strategies

[ Day [ Real value [ Strategy 1 | Strategy 2 [ Strategy 3 [ Strategy 4 | Strategy 5 |
29 212 210.11 208.38 208.38 209.24 208.38
30 215 206.79 202.79 206.79 204.78 219.01
31 209 210.94 209.78 210.94 210.36 210.94
32 199 201.45 192.44 192.44 196.94 192.44
33 222 201.25 184.58 201.25 192.90 218.42
34 223 186.69 75.16 186.69 130.81 222.82
35 220 211.23 225.19 211.23 218.22 225.19
36 222 210.14 218.20 218.20 214.18 218.20
37 226 211.28 216.98 216.98 214.13 216.98
38 214 210.33 221.15 221.15 215.75 221.15
39 197 201.46 197.67 201.46 199.56 201.46
40 217 201.18 188.09 188.09 194.62 220.09
41 220 213.98 210.47 213.98 212.22 213.98
42 228 222.73 223.96 222.73 223.35 222.73
43 234 218.81 236.88 236.88 227.87 236.88
44 237 209.50 261.30 261.30 235.45 239.13
45 223 207.30 253.08 253.08 230.24 224.57
46 203 201.39 223.43 201.39 212.43 201.39
47 226 201.36 202.36 201.36 201.86 223.74
48 236 183.58 207.16 207.16 195.40 228.80
49 234 197.54 232.61 232.61 215.11 243.54
50 228 220.12 223.72 223.72 221.92 240.25
51 224 210.47 215.44 215.44 212.96 230.61
52 209 209.93 211.13 211.13 210.53 211.13
53 196 201.39 203.03 201.39 202.21 189.10
54 217 201.30 188.76 201.30 195.01 219.37
55 221 197.70 172.19 197.70 184.92 226.84
56 218 191.41 203.82 191.41 197.63 218.94
57 215 207.74 207.52 207.52 207.63 207.52
58 215 210.74 210.69 210.74 210.72 210.74
59 209 209.44 212.70 209.44 211.07 199.78

into two groups. The first group which consists strategies from one to four
has approximately the form a(%)(”_l), where a is an initial number and n the
number of the subsequent interval. In the second group the dependance has
a similar form with the only difference that it is equal to % This is clearly a
significant difference and points at the great quality gap between the default
strategy and the other ones.

Finally let us introduce Table 8 presenting a sample of the system work
groupped by usage of different strategies. The simulation of the real fore-
casting was conducted on the data concerning the year 2003.

3.3. The other solutions for STLF based on Al-systems

In the literature there are many examples of STLF-systems described.
The main part of them are neural network and fuzzy rule based systems.

Among the neural techniques the layered networks are quite popular.
Some examples are to be found in [4] and [10]. In the described systems the
similar data model was exploited. The most important information to flow
to a network concerned the history of electrical load demand on the previous
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day, the air temperature and humidity, the type of weekday, for which the
forecast was created. In course of experiments various features of the system
were scaled and optimized, in particular network topology, the quantity of
neurons in subsequent layers, the number of hidden layers, etc.

The system described in [10] was based on a network consisting of four
layers with 8,15,10,1 neurons, respectively. The quality of prediction was
estimated by means of MAPE measure. The test outcomes obtained while
proceeding electrical demand data for years 1993-1994 fluctuated in the range
of 1.29% and 1.32%.

An analogous solution described in [4] took advantage of the 3-layer net-
work, containing the 34,6,1-neuron layers. The average prediction error esti-
mated by the same measure oscillated around 2%.

Both examples scored better results than the neural component of the
hybrid system. However there must be some points emphasized. First of
all, both solutions described above are based on layered neural networks,
whereas the hybrid system contains the one-layer(Kohonen-type) network.
These two various network types work in completely different way. The
Kohonen network match patterns in opposite to layered perceptrons that
suit to modelling functions difficult to compute.

On the grounds of cited results we can state that layered networks cope
better with STLF — problems. This fact may suggest concerning the use of
a layered network as a part of the hybrid. However we must be conscious
of several problems that are connected with this decision. The growth of
exactness is paid for by the greater complication of network topology. As a
result of that, the cost of the learning phase is greater. Finally the network
knowledge extraction becomes more difficult and expensive.

To summarize, the use of perceptron networks for building the neural
components of the hybrid should be the subject of another research. Such
investigation should embrace not only the exactness and effectiveness of the
network, but also such aspects as the cost of the learning process and the
difficulty of knowledge extraction.

In [4] there are also several examples of using of fuzzy systems in ap-
plication to STLF. In particular the fuzzy rule systems are analyzed. The
knowledge base in the form of the set of fuzzy rules was created in the process
of data classification and clusterization. (This can be done for instance by
means of neural networks). For calibrating the created fuzzy systems, espe-
cially fuzzy sets, the error back-propagation method was used. The reached
result of exactness is worth mentioning, i.e. MAPE = 1.99%. This fact sug-
gest reconsidering the use of methods for calibrating the parameters of fuzzy
systems. Final remark when estimating the outcomes of the fuzzy systems
is that one must always consider the performance factor. As it was said pre-
viously the main part of the cost of the hybrid system’s prediction is at the



93

fuzzy component’s side. When comparing the outcomes that originated from
two different fuzzy systems, one must make sure that both outcomes were
achieved by means of similar computational resources.
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