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ABSTRACT

Aims. The aim of this work is to develop a comprehensive method for classifying sources in large sky surveys and to apply the techniques to
the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using the optical (u∗, g′, r′, i′) and near-infrared (NIR) data (z′, Ks), we develop a
classifier, based on broad-band photometry, for identifying stars, active galactic nuclei (AGNs), and galaxies, thereby improving the purity of the
VIPERS sample.
Methods. Support vector machine (SVM) supervised learning algorithms allow the automatic classification of objects into two or more classes
based on a multidimensional parameter space. In this work, we tailored the SVM to classifying stars, AGNs, and galaxies and applied this
classification to the VIPERS data. We trained the SVM using spectroscopically confirmed sources from the VIPERS and VVDS surveys.
Results. We tested two SVM classifiers and concluded that including NIR data can significantly improve the efficiency of the classifier. The
self-check of the best optical + NIR classifier has shown 97% accuracy in the classification of galaxies, 97% for stars, and 95% for AGNs in the
5-dimensional colour space. In the test of VIPERS sources with 99% redshift confidence, the classifier gives an accuracy equal to 94% for galaxies,
93% for stars, and 82% for AGNs. The method was applied to sources with low-quality spectra to verify their classification, hence increasing the
security of measurements for almost 4900 objects.
Conclusions. We conclude that the SVM algorithm trained on a carefully selected sample of galaxies, AGNs, and stars outperforms simple
colour–colour selection methods and can be regarded as a very efficient classification method particularly suitable for modern large surveys.

Key words. methods: data analysis – methods: statistical – surveys – galaxies: fundamental parameters – stars: fundamental parameters –
cosmology: observations

1. Introduction

Over the years, the amount of astronomical data collected by
satellites and ground-based surveys is steadily increasing. The
zoo of collected data, such as photometry, redshifts, spectral
lines, and morphology, is constantly expanding, and increasingly
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(NRC) of Canada, the Institut National des Sciences de l’Univers of
the Centre National de la Recherche Scientifique (CNRS) of France,
and the University of Hawaii. This work is based in part on data
products produced at TERAPIX and the Canadian Astronomy Data
Centre as part of the Canada-France-Hawaii Telescope Legacy Survey,
a collaborative project of NRC and CNRS. The VIPERS web site is
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�� Postdoctoral Fellow of the Japan Society for the Promotion of
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researchers are turning to automated algorithms to explore the
high-dimensional parameter space. Although computationally
challenging, the goal is to make use of every available feature to
recognise and extract the most discriminating patterns and allow
full systematisation of the data.

Furthermore, the study of the dependence of galaxy proper-
ties on physical parameters such as galaxy mass or environment
can greatly benefit from the efficient classification of sources.
The classification of different types of sources is one of the basic
and, at the same time, crucial tasks to perform before moving on
to any scientific analysis.

The first physical classification of sources in a photomet-
ric sky survey is between foreground stars within the Galaxy
and extragalactic sources. Generally, the distinction between
stars and galaxies can be made based upon morphological mea-
surements; point sources are classified as stars, while extended
sources are classified as galaxies (e.g. Vasconcellos et al. 2011;
Henrion et al. 2011). For bright apparent magnitudes, the mor-
phology appears to be a reliable criterion for classifying stars and
galaxies, but at fainter magnitudes it becomes difficult to detect
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low-brightness objects like ultra-compact dwarf (UCD) galaxies,
which are often misclassified as foreground stars (Drinkwater
et al. 2003). Resolved stellar selection in the current and next
generation of wide-field surveys, such as Euclid (Laureijs et al.
2012), BigBOSS (Sholl et al. 2012), DES (Mohr et al. 2012),
LSST (Ivezic et al. 2009), LAMOST (Bland-Hawthorn 2012),
and Pan-STARRS (Kaiser et al. 2010), and/or deep surveys,
such as VUDS1 (Lefevre et al., in prep.), HUDF (Beckwith
et al. 2006), DLS (Wittman et al. 2002), and VISTA (Emerson
& Sutherland 2010), is being challenged by the vast number
of unresolved galaxies at faint apparent magnitudes (Fadely
et al. 2012). Including near-infrared (NIR) photometric bands for
many new surveys should improve the classification and separa-
tion of faint sources and stars, thereby providing an alternative
method of spectroscopy.

In the case of fainter sources, colour–colour diagrams are
the most widely used tools to separate different classes of ce-
lestial sources from one another, since different types of objects
will appear in different colour regions in such diagrams due to
the shape of the spectral energy distribution (SED). For exam-
ple, galaxies possess much redder colours than do stars owing to
the higher flux at longer wavelengths (e.g., Walker et al. 1989).
Classification methods based on colour–colour selection were
employed for star-galaxy separation (e.g. infrared colour dia-
gram used by Pollo et al. 2010) or for finding special classes
of sources, such as high/low-redshift quasars, active galactic nu-
clei (AGNs), starburst galaxies, or variable stars (Richards et al.
2002; Stern et al. 2005, 2012; Chiu et al. 2005; Brightman &
Nandra 2012; Woźniak et al. 2004).

Support vector machines (SVMs) are a class of supervised
learning algorithms that were created as an extension to nonlin-
ear models of the generalised portrait algorithm developed by
Vladimir Vapnik (Vapnik 1995), for classification in a multidi-
mensional parameter space. These algorithms are based on the
concept of decision planes to classify objects using their relative
positions in the n-dimensional parameter space. A large number
of observed properties may be analysed simultaneously by the
classifier making full use of the data. Within the full parame-
ter space, it is possible to build a more reliable classifier than
is possible by only using a subset of the data (for example, by
analysing only two photometric colours, instead of the complete
set). On the other hand, the method requires a training sample,
that is, a set of data that have known classifications. Generally,
SVM algorithms are sensitive to the measurement errors and are
of limited use for extracting information from noisy data sets
(Fadely et al. 2012). The classification of observed sources in as-
tronomy is a fundamental problem, and there is still no approach
completely free of drawbacks; however, SVM algorithms are a
novel and very promising classification strategy.

In this paper we apply the SVM algorithm to photomet-
ric data. Previous works (e.g., Fadely et al. 2012; Solarz et al.
2012; Vasconcellos et al. 2011; Ball et al. 2006) show high ef-
ficiency in that approach for two classes of objects (galaxies
and stars). Recently, the Photometric Classification Server (PCS)
for the prototype of the Panoramic Survey Telescope and Rapid
Response System (Pan-STARRS1) based on SVMs was devel-
oped (Saglia et al. 2012). The PCS system is using five photo-
metric bands (gP1, rP1, giP1, zP1, and yP1) and is able to sepa-
rate three groups of sources (stars, galaxies, QSOs) without any
preselection based on colour or redshift range and with high ac-
curacy of galaxy classification (∼97%). The purities of stellar

1 http://cesam.oamp.fr/vuds

and QSO samples’ classifications are worse, at the levels of 85%
and 83%, respectively.

We decided to develop a three-class recognition algorithm,
which will be able to classify galaxies/AGNs/stars based on
the photometric data in The Canada France Hawaii Telescope
Legacy Survey (CFHTLS). We used, as a training set in
colour space objects with the best-quality spectra from the
VIMOS Public Extragalactic Redshift Survey (VIPERS) and
VIMOS VLT Deep Survey (VVDS) Deep (F02 field) and
Wide (F22 field) data. After carefully selecting objects from
VIPERS by SVM and defining characteristic patterns for differ-
ent types of sources, it will be possible to enlarge the sample of
galaxies to be used for more detailed studies. We plan to use this
trained classifier on a large number of sources possessing low-
quality spectra within VIPERS to recover sources that cannot
be classified based upon the spectrum alone. A majority of ob-
jects with lower quality spectral information are absorption line
systems with low signal-to-noise ratio. Faint red stars and faint
passive galaxies are often difficult to distinguish by their spectral
features, if the quality of a spectrum is low. Reconfirmation of a
class of such an object by the SVM classifier (galaxy, AGN, or
star) based upon the photometric measurements also increases
the probability that their spectroscopically measured redshift is
correct.

The paper is organised as follows. In Sect. 2, we describe
the data used in our analysis, both spectroscopic and photomet-
ric. Section 3 describes the principles of the SVM learning al-
gorithm. In Sect. 4 we introduce the training sample used in
our work. In Sect. 5, we compare the efficiency of the classi-
fier with and without near infrared data. Additionally, we present
the results of the analysis of the basic tests for the classifiers –
self-check and test of the classifier on the VIPERS galaxies with
redshift measurements confirmation level equal to 95%. The sec-
tion closes with the selection of the optimal classifier used for
our subsequent analysis. Section 6 describes the results of our
classification of optical NIR SVM classifier objects from the
VIPERS samples. Finally, in Sect. 8 we discuss the advantages
and limitations of our current SVM classifier, and we outline our
improvements for the presented classifier.

2. Data

2.1. Photometric data

In this section we present the photometric data used in our work.
All quoted magnitudes used to develop SVM classifiers are in
the AB photometry system and were corrected for foreground
Galactic extinction according to the E(B − V) factor derived
from Schlegel maps (Schlegel et. al. 1998). The correction for
Galactic extinction was performed for each source separately
(see Fritz et al. 2013). The mean value of E(B−V) factor for the
CFHTLS W1 field is equal to 0.02 mag, and for the CFHTL W4
field it is equal to 0.05 mag.

CFHTLS photometry

The CFHTLS, a joint Canadian-French programme, has three
distinct survey components: (1) the SuperNovae Legacy Survey
the “Deep” survey; (2) the “Wide” – wide synoptic survey (on
which VIPERS survey was based); and (3) a very wide shallow
survey, the “Very Wide”.

The heart of MegaPrime, the wide-field optical imaging fa-
cility, is the MegaCam CCD camera (Boulade et al. 2000).
MegaCam provides multicolour photometry with wavelength (λ)
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Table 1. MegaPrime∗ and WIRCam∗∗ filter characteristics.

Filter u∗ g′ r′ i′ z′ Ks

Central λ (nm) 374 487 628 777 1170 2146
Bandwidth (nm) 76 145 122 151 687 325
Max. transmission (%) 77.5 93.5 96.3 98 95 98
Mag. limit∗∗∗ 25.30 25.50 24.80 24.48 23.60 22.00

Notes. (∗) http://www.cfht.hawaii.edu/Instruments/Filters/
megaprime.html (∗∗) http://www.cfht.hawaii.edu/Instruments/
Filters/wircam.html (∗∗∗) Measured as the 50% of completeness
(MegaPrime) and 5σ (WIRCam) for point sources.

coverage from 3500 to 9400 Å. The main characteristics of
the MegaPrime/MegaCam broad band filters are described in
Table 1. For a more detailed description we refer the reader to
the CFHTLS2 official web page.

The data used in this work are a part of CFHTLS T0005 re-
lease (Mellier et al. 2008), produced at the TERAPIX3 data cen-
tre. We consider a subsample of CFHTLS T0005 catalogue with
spectroscopic redshift measured by VIPERS.

The CFHTLS data are provided in single tiles with effec-
tive area of ∼1 deg square, which partially overlap each other.
During the preparation of the input data for spectroscopic ob-
servations we found the shift in colours between different tiles.
To obtain a homogeneous colour selection of spectroscopic tar-
gets, the tile-to-tile correction was performed by using one of
the fields overlapping with the VVDS-Deep survey (W1-25) as
a representative tile. The detailed description of the tile-to-tile
correction and the explanation of the colour correction method
can be found in the survey description paper (Guzzo et al. 2013).

WIRCam data

In our work, we also used NIR Ks measurements in the AB mag-
nitude system, which were corrected for galaxy extinction and
taken from Wide-field InfraRed Camera (WIRCam; Thibault
et al. 2003; Puget et al. 2004), coming from the dedicated follow-
up observations for the VIPERS project (Arnouts et al., in prep.).
The Ks filter has a central wavelength of 2146 nm, and maxi-
mum transmission on the level of 98%. One may find the de-
tailed description of WIRCam detector on the WIRCam CFHT
web page4.

2.2. Spectroscopic data

VIPERS survey

The VIMOS Public Extragalactic Redshift Survey5 is an
ongoing large programme aimed at measuring redshifts
for ∼105 galaxies at redshift 0.5 < z � 1.2, to accurately and
robustly measure clustering, the growth of structure (through
redshift-space distortions), and galaxy properties at an epoch
when the Universe was about half its current age. The galaxy
target sample is selected from optical photometric catalogues
of the Canada-France-Hawaii Telescope Legacy Survey Wide
(CFHTLS-Wide, Goranova et al. 2009; Mellier et al. 2008).

2 http://www.cfht.hawaii.edu/Science/CFHTLS/
3 http://terapix.iap.fr/
4 http://www.cfht.hawaii.edu/Instruments/Imaging/
WIRCam/
5 See http://vipers.inaf.it

VIPERS covers ∼24 deg2 on the sky and is divided into two
areas within the W1 and W4 CFHTLS fields. Galaxies are se-
lected to a limit of iAB < 22.5 measured using Sextractor’s
mag_auto (Kron 1980)-like magnitude. In addition, a simple
and robust colour preselection in (g − r) vs. (r − i) is applied
to efficiently remove galaxies at z < 0.5. In combination with an
efficient observing strategy (Scodeggio et al. 2009), this allows
us to double the galaxy sampling rate in the redshift range of in-
terest with respect to a purely magnitude-limited sample, reach-
ing an average target sampling rate of >40%. At the same time,
the area and depth of the survey results in a fairly large volume,
5 × 107 h−3 Mpc3, analogous to that of the 2dFGRS at z ∼ 0.1
(Colless et al. 2001, 2003). This combination of sampling and
depth is quite unique over current redshift surveys at z > 0.5.

VIPERS spectra are collected with the VIsible imaging
Multi-Object Spectrograph (VIMOS, Le Fèvre et al. 2000) at
moderate resolution (R = 210), using the LR red grism, pro-
viding a wavelength coverage of 5500–9500 Å, for a typical
redshift rms error of σz = 0.00047 (1 + z). The full VIPERS
area of ∼24 deg2 is covered through a mosaic of 288 VIMOS
pointings (192 in the W1 area, and 96 in the W4 area). Of the
VIPERS spectroscopic targets, more than 51 000 Ks counter-
parts were found: 96% (80%) of our spectra for W1 (W4) field
have Ks measurements. More detailed description of WIRCam
follow-up survey for VIPERS project can be found in Fritz et al.
(2013) and Davidzon et al. (2013).

The redshift quality is quantified at the time of validation by
attributing grading flags (VIPERSZflag) that are obtained from
repeated measurements of redshift for the same sources. The
VIPERSZflag for galaxies and stars range from a value of 4, indi-
cating >99% of confidence that the measurement is secure, to 0,
representing a lack of a reliable estimate of redshift. VIPERSZflag
equal to nine corresponding to galaxies with only one single
clear spectral emission feature. Objects classified as AGNs fol-
low the same scheme but their flags are increased by ten. A
similar system was used and tested for example for VVDS sur-
vey (Le Fèvre et al. 2005). A discussion of the survey data re-
duction and management infrastructure is presented in Garilli
et al. (2012). An early subset of the spectra used here has been
analysed and classified through a principal component analy-
sis (PCA) in Marchetti et al. (2012). A more complete descrip-
tion of the survey construction, from the definition of the target
sample to the actual spectra and redshift measurements, is given
in the parallel survey description paper, Guzzo et al. (2013).

The data set used in this paper are those of the early science
data release of VIPERS data as described in Guzzo et al. (2013);
see also de la Torre et al. (2013), Fritz et al. (2013), Marulli
et al. (2013), Bel et al. (2013), and Davidzon et al. (2013).
This data will be publicly available in fall 2013 as the VIPERS
Public Data Release 1 (PDR-1) catalogue. This catalogue in-
cludes 55 358 redshifts and corresponds to the reduced data as
it was in the VIPERS database at the end of the 2011/2012
observing campaign.

Using the automatic source classifier for VIPERS data is a
natural step to handle this unique data volume. Automated and
efficient source classifiers based on photometric observations,
can provide class labels for catalogues and be used to recover
objects for study according to various criteria. Moreover, a mul-
tilevel SVM classifier, trained to search for specific types of
sources such as AGNs or galaxies, with an additional redshift
measurement as a feature in the parameter space, can be used
to boost confidence in the reliability of redshift estimates for
sources with poor spectroscopic data. We are planning to de-
velop a more sophisticated and detailed classifier in the near
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future, enlarging the parameter space by adding measurements
of spectral lines and galaxy morphological parameters, thus
enabling a finer classification of our sources (e.g. distinguish
among different galaxy types).

In this work, we used VIPERS data both to construct a train-
ing sample and to select samples on which to apply the classifier
to separate three different classes of objects (galaxy/AGN/star).

VIMOS-VLT Deep Survey (VVDS)

VIPERS was designed as an extragalactic survey that aims to
efficiently measure of redshifts for a large sample of galaxies.
To increase the efficiency, stars were carefully removed from
the target candidates (which was particularly important for the
W4 VIPERS field owing to its low galactic latitude). To this aim,
both morphological and SED fitting techniques were used (see
Guzzo et al. 2013; Coupon et al. 2009). However, it was also
important to re-introduce AGNs, which were identified among
the stellar objects by their photometric properties (a more de-
tailed description of AGN selection can be found in the survey
description paper, Guzzo et al. 2013). Consequently, the number
of observed stars and AGNs in VIPERS is quite small.

To construct a reliable training sample (see Sect. 3), we
included data from another, similar, but more complete sur-
vey, VVDS. The VVDS fields, like VIPERS, are covered by
CFHTLS (and partially by WIRCam observations) and thus
the photometric information is homogeneous. Additionally, both
surveys utilise the VIMOS spectrograph in similar configu-
rations. The VVDS spectroscopic sample is based upon a
purely magnitude-limited selection such that the survey con-
tains a much wider variety of sources than VIPERS. We used
VVDS-Deep (F02 field) and VVDS-Wide (F22 field) surveys to
construct a training sample of AGNs (objects classified as AGNs
by Gavignaud et al. 2007). The stellar sample was chosen from
a part of VVDS Wide F22 that overlaps the VIPERS W4 field.

The Deep F02 survey, covering 0.49 square degrees, is
a purely magnitude limited sample to iAB ≤ 24. The de-
tailed description of the VVDS Deep survey may be found in
Le Fèvre et al. (2005). The VVDS Wide F22 survey (Garilli et al.
2008), covering an effective area three square degrees, is also a
magnitude limited survey with limitation to iAB = 22.5.

3. Method – support vector machines

The main purpose of the SVM is to calculate decision planes be-
tween a set of objects having different class memberships. A so-
called training sample, a training set of objects, is used to provide
the SVM with examples of the different classes of sources. The
SVM searches for the optimal separating hyperplane between
the n different classes of objects by maximising the margin be-
tween the classes closest points (the so-called support vectors).
Instead of using the probability function as in Bayesian statistics
or template-fitting methods, the objects are classified based on
their relative position in the n-dimensional parameter space with
respect to the separation boundary. A well chosen training sam-
ple is at the heart of the method, because, based on the properties
of the training sample, the classifier is tuned, and the hyperspace
between classes is determined.

The SVM algorithm represents a major development in
machine-learning techniques. It can be applied to classification
or regression problems and is nowadays constantly growing in
popularity, to deal with astronomical data for distinguishing dif-
ferent classes of sources based on a multidimensional space of

Fig. 1. Illustration of the operation of the SVM algorithm. The input
data (on the left side) are transformed by a kernel into the higher di-
mensional feature space (right side) where, instead of having a complex
boundary separating different classes of objects, we can find an optimal
separating hyperplane.

parameters taken from observations. Recently, Woźniak et al.
(2004) has used SVMs efficiently to analyse variable sources in
a five-dimensional space constructed from the period, amplitude,
and three colours. Huertas-Company et al. (2008) quantified the
morphologies of NIR galaxies based on 12-dimensional space,
including five morphological parameters and other characteris-
tics of galaxies, such as luminosity and redshift. Solarz et al.
(2012) created a star-galaxy separation algorithm based on mid
and NIR colours, and Saglia et al. (2012) separated three differ-
ent classes of sources (galaxies, QSOs, and stars) from the PAN-
STARRS1 survey, based on five photometric bands. Last year
brought a significant number of astronomical papers that im-
plement supervised machine-learning algorithms to handle var-
ious tasks, not only to classify sources but also to predict char-
acteristic features of specific objects. For example, Peng et al.
(2012) used SVM to select AGN candidates and to estimate
redshift, Hassan et al. (2013) – to search specific AGN sub-
class: BL Lacertae and flat-spectrum radio quasars based on the
Second Fermi LAT Catalogue). Clearly SVMs present an inno-
vative method with great potential to be widely used in many dif-
ferent branches of astronomy, a potential we are just beginning
to tap into.

We used the SVM algorithm to build a non-linear classifier
for photometric data to select three different classes of objects:
galaxies, AGNs, and stars. The first step in our classification task
involves selecting a secure training sample of galaxies, AGNs,
and stars, taking advantage of the redshift information provided
by VIPERS and VVDS and using their attributes – i.e. their ob-
served photometric fluxes – to train the SVM.

The algorithm, aided by a non-linear kernel function,
searches for a hyperplane that will maximise the distance
from the boundary to the closest points belonging to the sep-
arate classes of objects (Cristianini & Shawe-Taylor 2000;
Shawe-Taylor & Cristianini 2004). The kernel is a symmetric
function Φ that maps k : X × X → F, so that for all xi and
x j, k(xi, x j) = 〈Φ(xi),Φ(x j)〉 from the input space X to the fea-
ture space F (Vanschoenwinkel & Manderick 2005), see Fig. 1.
For our analysis we chose a Gaussian radial basis kernel (RBK)
function, defined as

k(xi, x j) = exp (−γ||xi − x j||2), (1)

where ||xi− x j|| is the Euclidean distance between xi, and x j. The
effect of the kernel function is a non-linear representation of each
parameter from the input to the feature space. The RBK kernel
is one of the most popular SVM kernel functions, used to make
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the non-linear feature map. We decided to use it because of its
effectiveness and simplicity in adjusting the free parameters.

For our tasks, we used a soft-boundary SVM method
called C-SVM. We chose C-classification because of its good
performance and only two free parameters:

– C – a trade-off parameter that sets the width of the margin
separating different classes of objects. A large C value sets
a small margin of separation between different classes of
objects; however increasing the C parameter too much can
lead to over-fitting. Reducing C will make the hyperplane
between different classes of objects smoother, allowing for
some misclassifications.

– γ > 0 parameter (related to the kernel function) determines
the topology of the decision surface. A low value of γ sets
a very rigid, and complicated decision boundary; a value of
γ that is too high can give a very smooth decision surface
causing misclassifications.

A schematic representation of the SVM algorithm classification
process, beginning with choosing the training sample, tuning C
and γ parameters, self-checking of the classifier, and finally,
classifying the real sample is shown in Fig. 2.

For our analysis we used LIBSVM6 (Chang & Lin 2011),
an integrated software for support vector classification, which
allows for multiclass classification. We used R7, a free software
environment for statistical computing and graphics, with e1071
interface (Meyer 2001) package installed.

4. Training sample

The successful application of an SVM algorithm requires a care-
fully selected training sample – a set of objects with confirmed
classes which will serve as a template for distinguishing the
sources whose class we want to determine. Since this work is fo-
cused on the selection of galaxies, AGNs, and stars we select as a
training sample a set of sources whose basic class (galaxy, AGN
or star) was established with the highest reliability thanks to their
high quality spectra (their redshift being measured with the high-
est confidence flag within the VIPERS or VVDS surveys). For
these sources the accurate photometric information provided by
the CFHTLS wide-survey and the WIRCam follow-up observa-
tions of the VIPERS/VVDS fields, provided the colour infor-
mation needed to create the discriminant vectors for training
our SVM algorithm. We produced a model (the optimised C
and γ parameters based on the training data), which predicts the
target values of the test data given only the test data attributes
(Hsu et al. 2010).

4.1. Galaxies

As a galaxy training sample we used the sources with the best
redshift measurements in both the W1 and W4 VIPERS fields
(VIPERSZflag = 4, corresponding to the highest confidence level
of redshift measurements and thus of spectroscopic classifica-
tion as a galaxy). It is useful to remember that VIPERS is pre-
selected not only in magnitude (i′ < 22.5) but also in colours:
(r′ − i′) > 0.5 ∗ (u∗ − g) or (r′ − i′) > 0.7. We have divided
the galaxy training set into i′-based apparent magnitude-binned
samples and trained the classifier on each subset. As a galaxy
training sample we used 16 271 galaxies: 1884, 5483, 6778,

6 http://www.csie.ntu.edu.tw/cjlin/~libsvm/
7 http://www.r-project.org/

Fig. 2. Schematic representation of the SVM algorithm classification
process. We take as input the preselected training sample consisting of
(in the case of this work) three distinct classes of objects. The SVM is
taught how to distinguish one class from the others based on the dis-
criminating properties chosen as feature vectors. Then, the classifier is
trained by tuning the free parameters (C and γ). If the result reaches
a high enough accuracy rate (the number of objects from the training
sample that are correctly recognised by the classifier) without overfit-
ting (the resulting hyperplane does not confine the sources of a spe-
cific type too tightly), it will be used to classify the unknown objects
(test sample). If the accuracy is not satisfactory, a different parameter
space (or training sample, if possible) is chosen to tune C and γ. After
a number of iterations, which allow the classifier to reach high enough
efficiency level, a real sample can be classified using the discriminant
hyperplanes.

and 3226 for 19 � i′ < 20, 20 � i′ < 21, 21 � i′ < 22, and
22 � i′ < 22.5 apparent magnitude-bins, respectively. Based on
our initial tests, we decided to divide our galaxy sample into the
magnitude bins to separate more efficiently different groups of
galaxies seen in different i′ apparent magnitude ranges to im-
prove their classification. Figure 3 shows that galaxies in differ-
ent magnitude bins occupy different areas of the colour–colour
plots, partly because of different redshift range and different
morphology.

4.2. AGNs

Given the small number of AGNs detected in the VIPERS fields
with the VIPERSZflag = 14, we increased the AGN sample by
using all AGNs which had at least 99% confidence level of spec-
troscopic classification (VIPERSZflag 13 and 14, in total 398 ob-
jects). AGN spectra are quite easy to recognise, so a lower flag
on the quality of the measured redshift does not infringe on the
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Fig. 3. Representative colour–colour plots for the galaxy training sample. Open black squares represent objects with i′-apparent magnitude be-
tween 19 and 20 mag; green X-s – galaxies with i′ magnitude between 20 and 21 mag; objects with i′ apparent magnitude between 21 � i < 22,
and 22 � i < 22.5 mag are marked as blue +-s and open red triangles, respectively; in the middle panel of colour–colour plots, the boundaries of
VIPERS selection are marked as magenta lines.

reliability of the classification as an AGN. There are two ways
that an AGN can be observed in VIPERS:

– it is star-like and meets the AGN candidate selection. This in-
cludes samples of X-ray selected AGNs from the XMM-LSS
survey, overlapping the VIPERS W1 field (Pierre et al.
2004), and AGNs selected by colour–colour criteria from
the sample of star-like sources that would otherwise not be
targeted.

– it meets the galaxy selection criteria – AGNs which met the
galaxy criteria during the main VIPERS colour preselection.

We stress that the colour preselection for galaxies and AGNs
is slightly different, and AGNs occupy only a part of the full
colour–colour galaxy plane. The first AGN colour separation
criterion CC1AGN:

(g′ − r′) < 1 ∧

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1. (u∗ − g)corr < 0.6,

2.
0.6 �

(
u∗ − g)corr < 1.2 and(

g′ − r′)corr > 0.5
(
u∗ − g′)corr + 0.036,

3.
0.6 �

(
u∗ − g)corr < 2.6 and(

g′ − r′)corr < 0.5
(
u∗ − g′)corr + 0.214,

4.
(
u∗ − g′)corr > 2.6,

(2)

where (u∗ −g)corr and (g′ − r′)corr correspond to tile colour offset.
The colour–colour selection criterion of AGNs, given in

Eq. (2), was based on the results from the VVDS survey. After
one year of observations it turned out that this selection crite-
rion introduces a stellar contamination at the level ∼60%. From
August 2010, additional criterion CC2AGN, including the (g′ − i′)
vs. (u∗ − g′) colour–colour plane, was added to eliminate stel-
lar sample from AGNs targets. The set of colour–colour criteria
included to CC2AGN is
⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1.
(
u∗ − g′)corr < 0.6 and − 0.2 <

(
g′ − i′

)
< 1,

2.
0.6 �

(
u∗ − g′)corr < 1 and

−0.2 <
(
g′ − i′

)
< 0.2,

3.
(
u∗ − g′)corr � 1 and

(
g′ − i′

)
< 0.6.

(3)

Therefore, both criteria (Eqs. (2) and (3)) applied simultaneously
defined VIPERS AGN targets. However, most of the AGNs
share the same colour–colour space as galaxies (as can be seen
in Fig. 6). A part of AGNs occupy different colour–colour ar-
eas than galaxies and for them, the galaxy/AGN separation is
not so difficult. For objects classified as AGNs lying in the
same colour–colour plane, the galaxy/AGN/star separation is
more challenging. For this reason we decided to use SVM with
n-dimensional photometric parameter space to classify sources

with similar properties in the typical colour–colour plane. That
is why it is a challenge to distinguish all three classes of objects
using an automatic classifier.

To enlarge the AGN training sample, we also merged the
VIPERS sample with objects classified as broad-line AGNs in
the VVDS survey. In our training sample we included AGNs
identified by Gavignaud et al. (2007) – a catalogue of broad
emission-line AGNs, from the purely flux-limited spectroscopic
sample of the VVDS survey. No colour-based preselection
has been applied to these AGNs. For our studies we used
100 AGNs from VVDS Deep F02 (Le Fèvre et al. 2005) and
VVDS Wide F22 (Garilli et al. 2008) fields only. We selected
these fields since they have the same CFHTLS photometry sys-
tem as the VIPERS survey. We found that AGNs detected in both
VIPERS fields do not display any systematic difference in the
colour–colour distribution, confirming that our extinction cor-
rection works well.

Cumulatively, our AGN training sample reached 498 objects.
A part of them, observed by VIPERS, preselected by colour.
AGNs from VVDS fields have no colour preselection (flux-
limited only). Since we checked on colour–colour plots (see
Fig. 4), in the different magnitude bins, we do not see a change
in population of our AGN sample with apparent luminosity. For
this reason, unlike the case of the galaxy sample, we decided not
to divide the AGN training sample into i′-based apparent mag-
nitude binned samples, but to use it as a whole in each bin to
increase the population of the training AGNs.

4.3. Stars

VIPERS performed a star/galaxy classification in the CFHTLS
wide fields to effectively remove stars from the sample of ob-
served targets. This procedure is crucial, since at i′ < 22.5
the fraction of stars can be as high as 50% (as in the case
of W4, Guzzo et al. 2013). The basic VIPERS classification
procedure was based on the colour–colour preselection with
(r − i) > 0.5 ∗ (u − g) or (r − i) > 0.7, but owing to the low
galactic latitude of W4 field, VIPERS implemented an additional
procedure. We refer the interested reader to Guzzo et al. (2013)
for a complete description of the adopted strategy, but here it
is sufficient to mention that for objects brighter than i′ = 21
an additional preselection based on the observed angular size
of sources was applied, while for objects fainter than i′ = 21
a combined method making use of an angular size and SED
fitting by the Le Phare code (Arnouts et al. 1999; Ilbert et al.
2006) has been used. These preselection criteria proved to be
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Fig. 4. Representative colour–colour plots for the AGN training sample. Full magenta triangles represent objects brighter than 19 mag in the i′ band.
Open black triangles – AGNs with i-apparent magnitude between 19 and 20 mag; open green circles – AGNs with i′ magnitude between 20 and
21 mag; objects with i′ apparent magnitude between 21 � i < 22, and 22 � i < 22.5 mag are marked as open blue squares and open red diamonds,
respectively; AGNs with i′ apparent magnitude fainter than 22.5 are marked as open rotated cyan triangles.

Fig. 5. Representative colour–colour plots for the star training sample. Open black triangles – stars with i-apparent magnitude between 19 and
20 mag; open green circles – stars with i′ magnitude between 20 and 21 mag; objects with i′ apparent magnitude between 21 � i < 22, and
22 � i < 22.5 mag are marked as open blue squares and open red diamonds, respectively.

very effective. However, the average stellar contamination in the
VIPERS database, for both fields, remains on the level of 3.2%
(1.49% and 4.86% for the W1 and W4 fields, respectively). It
means that in the VIPERS PDR-1 catalogue, which includes
55 358 objects, only 1750 objects have been identified as stars. In
sum, the VIPERS PDR-1 catalogue contains 1750 (3.20%) stars
classified as galaxies in the beginning, with colours compatible
with an object at z > 0.5. This stellar sample can be divided into
two main groups:

– stars that were not distinguishable from galaxies based on
the VIPERS preselection criteria; and

– stars that were included in the sample as AGN candidates.

Then, it should be stressed that the stars observed by VIPERS are
interlopers within the galaxy and AGN samples and are thus not
representative of the stellar class. However, our method uses the
multidimensional colour space which opens a possibility that in
such a space, these sources may occupy a region separated from
galaxies and AGNs.

To build an unbiased star training sample we added spec-
troscopically classified stars from the VVDS Wide F22 over-
lap with the VIPERS W4 field. VVDS Wide F22 observa-
tions were carried out on the same magnitude limits sample as
VIPERS, but without any photometric preselection. The overlap
between the VVDS Wide F22 and VIPERS W4 fields contains
920 objects spectroscopically classified as stars by VVDS in the
19 � i′ < 22.5 apparent magnitude bin. We increased the stel-
lar training sample by using all VIPERS stars with VIPERSZflag
equal to 4, in the same apparent magnitude bin (1312 objects).
Cumulatively, our stellar training sample reached 2232 objects.

Fig. 6. Representative colour–colour plot for VIPERS galaxies with
VIPERSZflag = 4 (pink x-s) and AGNs with VIPERSZflag = 3 and 4
(open blue circles).

Similar to the case of the AGN training sample, we did not
divide the stellar training sample in i′-based apparent magnitude
bins. As shown on the representative colour–colour plots for the
different magnitude i′ bins (Fig. 5), we did not observe a signifi-
cant change in the distribution of our stellar sample as a function
of apparent luminosity.
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Fig. 7. Representative colour–colour plots for all objects used for the training sample. Pink x-s represent galaxies. Open blue circles correspond to
the AGN sample, and open black squares to the stellar sample.

Table 2. Number (N) of galaxies, AGNs, and stars in our training sam-
ple after using the oversampling method.

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
N galaxies 1884 5483 6778 2126
N AGNs 1520 4440 5440 1760
N stars 2232 4440 5 440 2232

4.4. Oversampling

Our training sample includes more than 16 000 galaxies, and
only 2232 stars and 498 AGNs. Figure 7 shows the representa-
tive colour–colour plots for galaxies, AGNs, and stars chosen for
the best training sample set. Sampling strategies, such as over-
sampling and undersampling, are popular solutions for tackling
the problem of classification because the SVM classifier is sen-
sitive to a high-class imbalance, resulting in a drop in the classi-
fication performance (e.g., Tang et al. 2009; Akbani et al. 2004;
Raskutti & Kowalczyk 2004). An unbalanced training set tends
to overpredict the majority class for unknown sources (Tian et al.
2011).

To avoid this effect, we performed an oversampling of the
AGN and stellar training sets so that in each considered magni-
tude bin we had a similar effective number of objects classified
as galaxies, AGNs, and stars, respectively. In fact, despite our
decision not to splits AGN and star classes into magnitude bins,
unlike what we did in the case of galaxies, the imbalance be-
tween the numbers of representatives in each class remains high.

Using a simple oversampling technique, we raised the effec-
tive number of AGNs and stars up to ∼80% of the number of
galaxies in each magnitude bin considered. We therefore added
in each magnitude bin a number of artificial objects calculated as


Xi_missing�10 = NGi × 0.8 − X (4)

where Xi_missing is a number of missing objects (AGNs, stars),
and symbol 
�10 corresponds to rounding the value up to the
nearest ten. The additional artificial objects were created by
shifting the observed magnitudes by an amount drawn from a
Gaussian distribution with σ = 0.05. We also checked how the
stellar and AGN training samples work if we did not perturb
the colours, but instead populated real objects multiple times.
As might be expected, the results of classifiers were worse than
with randomly modified stars and AGNs. This method also al-
lows us to take all possible small residuals differences into ac-
count in photometry between the two fields. Table 2 summarises
the numbers of training galaxies in each magnitude-binned set
together with the number of AGNs and stars after oversampling.

Fig. 8. Mean misclassification rate as a function of C and γ as estimated
from the ten-fold cross-validation technique performed for each pair of
parameters (see text for more details). The lower the ratio of misclassi-
fication, the better the performance of the SVM algorithm.

5. Results

5.1. Training procedure

To build a classifier that will be able to separate different classes
of objects, it is necessary to tune the C and γ parameters using
the training sample. For the best performance, we performed a
grid search with values from γ ∈ 10(−3:−1) and C ∈ 10(0:3) using
a ten-fold cross-validation technique. We first divided the full
training sample into ten subsets of equal size and selected nine
subsets to train the classification model and test it against the re-
maining subset (the so-called self-check). This test was repeated
ten times, with a different subset removed for each training run.
The classification accuracy was then averaged over the ten runs.
This process was repeated for each value of the parameters C
and γ. In Fig. 8 we present a representative plot of the the grid
search, done for the apparent magnitude bin 19 � i′ < 20. The
colour of each pointing of the grid codes the mean misclassifi-
cation rate of all γ and C values (on a log scale on the X and
Y axis, respectively). The misclassification rate is defined as (1-
total accuracy) for each magnitude bin (see Eq. (6) further in
the paper): the lower the ratio of misclassification, the better the
performance of SVM algorithm. We would like to stress that a
change in the parameter space (such as adding more parame-
ters describing properties of sources) or a sufficient change in
the number of training objects inside one class may result in al-
tering the occupancy of training objects and therefore requires
recalculating the best parameters.

To check the efficiency of our classifiers, we counted the
true objects (true galaxies – TG, true AGNs – TAGN, and true
stars – TS from the training sample originally classified as galax-
ies, AGNs, and stars, respectively) and false objects: FG (false
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Table 3. Results of the self-check of the purely optical classifier (u∗, g′, r′, and i′ only).

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
Total accuracy 85.01% 87.38% 85.09% 88.09%
SVM/true Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star
Number of sources 1884 1520 2 232 5483 4440 4440 6778 5440 5440 2126 1760 2232
Galaxy 88.82 15.70 10.98 92.10 6.23 15.06 88.39 15.50 10.01 93.18 17.47 3.00
AGN 4.45 69.45 10.23 3.28 90.88 4.48 4.04 81.54 3.81 4.37 79.06 3.28
Star 6.73 14.85 78.79 4.62 2.89 80.46 7.57 2.96 86.19 2.46 3.47 93.72

Notes. Columns corresponds to the true (spectroscopically classified) galaxies, stars, and AGNs. Rows correspond to objects classified as galaxies,
AGNs, and stars by our classifier. Then values in bold correspond to the correctly classified objects (galaxies, AGNs, and stars) in defined i′-based
apparent magnitude bins. Ratios of classified objects are given in percentage.

Table 4. Results of the self-check of the classifier with the NIR data (u∗, g′, r′, i′, z′, and Ks).

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
Total accuracy 95.47% 95.83% 94.28% 94.58%
SVM/true Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star
Number of sources 1884 1520 2232 5483 4440 4440 6778 5440 5440 2126 1760 2232
Galaxy 96.28 2.90 1.27 97.61 1.95 0.44 97.11 5.00 2.10 96.10 6.09 1.57
AGN 2.44 95.91 1.70 1.95 96.34 0.80 2.52 94.83 0.77 3.38 92.94 1.30
Star 1.28 1.19 96.37 0.44 0.27 97.25 0.37 0.17 97.13 0.52 0.97 97.13

Notes. Columns correspond to the true (spectroscopically classified) galaxies, stars, and AGNs. Rows correspond to objects classified as galaxies,
AGNs, and stars by our classifier. The values marked in bold are correctly classified objects (galaxies, AGNs, and stars) in defined i′-based apparent
magnitude bins. Ratio of classified objects are given in percentage.

galaxy: when a source from the stellar or AGN training sample
is classified as a galaxy by the SVM); FS (false star: when an
object from a galaxy or AGN training sample is classified as a
star by the SVM); and FAGN (false AGN: when an object from
a galaxy or star training sample is classified as an AGN by the
SVM). We then calculated the accuracy of our classifier based
on the formula:

Accuracy =
TG + TAGN + TS

TG + TAGN + TS + FG + FAGN + FS
· (5)

After completing the ten-fold cross-validation process we cal-
culated the total accuracy of the SVM classifier, defined as the
mean accuracy for all iterations:

Total Accuracy =
ΣN

i= 1Accuracyi

N
, (6)

where N = 10 is the number of validation iterations. We per-
formed this check in each magnitude bin considered.

In our work for galaxy/AGN/star classification, we used both
a three- and five-dimensional colour space. The first one was
built using only optical data, corresponding to (u∗ − g′), (g′ − r),
and (r′ − i) colours, while the second one included NIR data and
thus used two extra colours: (i′ − z′), and (z′ − Ks).

5.2. Optical u∗g′r ′i′ classifier

We constructed colour–colour training samples without NIR
data, based only on the optical u∗, g′, r′, and i′ filter bands
(a three-dimensional hyperspace). We found that the Total
Accuracy, as well as the number of correctly classified objects
for this approach, depend on the apparent magnitude of objects.
Averaging over all magnitude bins (19 � i′ < 22.5), once we
average results by the number of objects in each bin, the mean
Total Accuracy for the optical classifier is equal to 86.39%.

The results of the self-check of our classifier are shown in
Table 3, showing that only in a few percent of the cases (less

than 11% in all magnitude bins), galaxies are classified as a
star or as an AGN. The most frequent misclassifications occur
in the 19 � i′ < 20 bin, in which galaxies are correctly clas-
sified at the level of 88.82%, AGNs – 69.45%, and stars at the
level of 78.79%. The misclassifications between stars and galax-
ies are noticeable in the first three bins. For 20 � i′ < 21 and
21 � i′ < 22 bins, more than 10% of spectroscopically classi-
fied stars are classified by the SVM as false galaxies (15.06%
and 10.01%, respectively). In the same bins, AGNs are mis-
classified as galaxies at the high levels of 6.23% and 15.50%,
respectively.

The misclassification of galaxies and AGNs happens mainly
in the bins where the percentage of oversampled objects in-
creases. The reason may be related either to our oversampling
method or to the lower accuracy of photometry for the fainter
sources, as well as to the intrinsic properties of classified sources
in these bins. We stress that for the SVM method the 100%
level of self-check is not desirable since it may indicate over-
fitting. The boundaries between different classes of objects de-
fined by the training sample may become too rigid and artifi-
cially complex, not allowing for effective classification of real
sources. Nevertheless, it seems that the present, very basic clas-
sifier, which was created on the basis similar to the standard
colour–colour approach, works well for our training sample.

We next apply our trained classifier to VIPERS galaxies with
redshift quality flag VIPERSZflag = 3, corresponding to a confi-
dence of the redshift measurements – and correspondingly of
correct identification as a galaxy – of >99% (hereafter GAL3).
Table 5 shows that GAL3 are correctly classified at a level higher
than 85% with a percentage of misclassification that is almost
constant at a level of 15% maximum. The strong contamination
by false stars is visible for objects fainter than i′ = 21 mag. It
is reassuring that this trend is similar to the self-check results
(Table 3) demonstrating that the training sample is representa-
tive of the data. In the fainter magnitude bins, the photometric
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Table 5. Test of SVM optical classifier on the galaxies with VIPERSZflag

equal to 3.

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
Galaxies 90.97 91.41 85.38 88.82
False AGNs 2.76 2.81 3.06 4.45
False stars 6.27 5.78 11.56 6.73

Notes. In the first row we show the percentage of correctly classified
galaxies. Second and third rows show the percentage of miss-classified
galaxies: when a true galaxy is classified by SVM as an AGN or a star,
respectively.

Table 6. Test of SVM classifier with NIR data on the galaxies with
VIPERSZflag equal to 3.

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
Galaxies 95.38 95.17 93.09 92.72
False AGNs 2.42 2.72 4.30 5.29
False stars 2.20 2.11 2.61 1.99

Notes. The first row represents the percentage of correctly classified
galaxies. Second and third rows show the percentage of mis-classified
galaxies: when a true galaxy is classified by SVM as an AGN or a star,
respectively.

errors increase such that the optical u∗, g′, r′, and i′ fluxes are
not as efficient in distinguishing galaxies and stars.

5.3. Optical+NIR (u∗g′r′i′z′Ks) classifier

We enlarged the parameter space by adding the NIR colours (z′
and Ks) to our classifier (a five-dimensional hyperspace). We
performed the same tests as for the optical classifier (self-check,
and test on VIPERS GAL3).

Our training sample, composed of exactly the same sources
as the optical classifier, but with NIR measurements, allows us
to train a new optical + NIR classifier. The mean Total Accuracy
for this classifier is equal to 94.29%, i.e. higher than the pure
optical one. Total accuracy for particular magnitude bins stays
on the similar level ∼95% for the whole i′-apparent magnitude
binned sample. The constancy of the new classifier for objects
fainter than 20 mag in i′ band is very promising for the next tests
and final classification of VIPERS objects.

Table 4 shows the self-check for the u∗, g′, r′, i′, z′ and Ks
space classifier. When we average over all magnitude bins,
galaxies are correctly classified in ∼97.03%, AGNs in 95.13%,
and stars in 97.05% of the cases. All these numbers are signifi-
cantly higher than those for a purely optical classifier. In the case
of AGNs, the difference between correctly classified sources for
optical and optical+NIR classifiers is equal to 26.46%, 5.46%,
13.30%, and 13.88% for 19 � i′ < 20, 20 � i′ < 21, 21 � i′ <
22, and 22 � i′ < 22.5 apparent magnitude bins, respectively.
Stars are correctly classified at a higher level than AGNs, with
a difference between optical and optical+NIR classifiers equal
to 17.58%, 16.79%, 10.94%, and 3.41% for the same magnitude
bins.

Applying this classifier to VIPERS galaxies with
VIPERSZflag equal to 3 (GAL3, Table 6) shows that galax-
ies are correctly classified at the very high level of 93.60% (we
average results by the number of objects in each bin). Incorrect
galaxy classifications, false AGNs and false stars, are very rare
and do not exceed 2.65% for stars and 5.30% for AGNs.

Fig. 9. Total accuracy for optical and optical+NIR classifiers (see
Tables 3 and 4). Results for the optical classifier based on the u∗, g′, r′,
and i′ filter are marked as a dotted line. Solid line corresponds to the
total accuracy of the optical+NIR classifier.

We can observe the trend for galaxies to have an increased
risk of being misclassified as AGNs in the faintest magnitude
bins. One possible explanation for this behaviour is the decrease
in the quality of the photometry for the less luminous sources,
which have a lower signal-to-noise ratio. On the other hand,
the limiting magnitude of CFHTLS is much deeper than the
VIPERS one, and photometry should still be fairly good down
to mag i′ 22.5. Another explanation could be that some of these
galaxies are hosting faint AGNs that were not recognised during
the visual verification and validation of the measured redshift,
since with the decreasing luminosity the host galaxy becomes
dimmer and the AGN component becomes more significant.
This possibility will be examined further in future works.

5.4. Comparison of the classifiers

In Fig. 9 we compare the total accuracy for the optical and opti-
cal+NIR classifiers. However, on average the classifier based on
the u∗, g′, r′, i′, z′, and Ks bands is 7.90% better then the classifier
trained without z′ and Ks data. Moreover, the total accuracy of
the optical+NIR classifier decreases very weakly with the appar-
ent magnitude, while a strong variation from bin-to-bin is visible
for the purely optical classifier. etween the first and the second
apparent magnitude bin the difference between their total accu-
racy rises from 6.49% to 10.46% from the fainter to the brighter
bins.

The preponderance of the classifier constructed with the
NIR data is confirmed by the efficiency of correctly classify-
ing galaxies with VIPERSZflag equal to 3 (GAL3). Figure 10
shows the comparison of accuracy of both classifiers (with and
without NIR data) for the GAL3 sample. For the fainter objects
(21 � i′ < 22), the efficiency decreases rapidly for the classi-
fier trained without z′ and Ks bands, and much smoother for the
more sophisticated classifier trained with infrared features.

We conclude that including NIR data to train the
SVM algorithm significantly improves the efficiency of the
galaxy/AGN/star classifier. It is evident that NIR features are
very important for building an effective classifier for basic as-
tronomical classification of these three classes of sources. Based
on the above tests, we decided to choose the classifier based on
the u∗, g′, r′, i′, z′, and Ks bands to be used in our next analysis.
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Fig. 10. Accuracy of optical and optical+NIR classifiers for VIPERS
galaxies with VIPERSZflag equal to 3 (GAL3). Results for classifier
based on the u∗, g′, r′, and i′ filters only are marked as a dotted line.
Solid line corresponds to the classifier with the NIR data (u∗, g′, r′, i′, z′,
and Ks).

6. Consistency checks on VIPERS data

6.1. VIPERS objects with redshift confirmation level of �99%

We now apply the optical+NIR classifier only to VIPERS data:

– galaxy sample – all (GAL3) galaxies in i′-apparent magni-
tude range between 19 and 22.5 mag, with the total number
of sources equal to 13 539,

– AGN sample – all AGNs detected by VIPERS, with redshift
confirmation level equal to or higher than 99%, and with i′
apparent magnitude between 19 and 22.5 (367 objects). All
of these AGNs were used to build the training sample (see
Sect. 4.2) which means that our classifier should know their
position in our five-dimensional space of parameters. This
is not as worrisome as it may look thanks to the high over-
sampling needed for AGN sample (more than 200% for the
brightest and the faintest apparent magnitude bins, and al-
most 800% for 20 � i′ < 21 and 21 � i′ < 22 for i′-apparent
magnitude bins) that significantly erases the possibly pecu-
liar characteristics of the 367 AGN chosen for the training
sample.

– stellar sample – all spectroscopically detected stars, with
confirmation level of >99% (VIPERSZflag equal to 3 and 4),
and i′ apparent magnitude between 19 and 22.5 (1729 stars).
All stars with VIPERSZflag = 4 were used as a part of stellar
training sample.

Figure 11 shows the representative colour–colour plot for GAL3,
AGNs with VIPERSZflag equal to 13 and 14, and stars with
VIPERSZflag equal to 3 and 4, chosen for the consistently check.

For this test, all three classes of sources were divided into
four i′-apparent magnitude bins (19 � i′ < 20, 20 � i′ < 21,
21 � i′ < 22, and 22 � i′ < 22.5), the same as used in the train-
ing sample. Then, we applied our optical+NIR classifier to this
data. Table 7 shows the results of the automatic classification.

The mean accuracy for galaxies, averaged over the
mean number of objects in each apparent magnitude bin,
equals 93.60%. This result for galaxy classification displays only
aslightly lower level of efficiency (∼1.50%) than the galaxy clas-
sification obtained during the self-check of the classifier (see
Sect. 5.3). It means that the hyperspace of galaxy parameters
used for the training sample is well defined.

Fig. 11. Representative colour–colour plot for all objects used for a con-
sistency check for VIPERS objects with redshift confirmation levels
>99%, with i′ apparent magnitude between 19 and 22.5. Pink x-s rep-
resents galaxies with VIPERSZflag = 3. Open blue circles correspond
to AGN sample with redshift confirmation level equal to or higher
than 99% (VIPERSZflag equal to 13 and 14). Open black squares cor-
respond to stellar sample with VIPERSZflag equal to 3 and 4.

The result of AGN classification is worse than the one ob-
tained during the self-check but still satisfactory. After averag-
ing over all magnitude bins, AGNs are correctly classified at a
level equal to 81.80% with a significant decrease with i′ appar-
ent magnitude between 21 and 22 mag. Stars are correctly classi-
fied at the high mean level of 92.52% with a significant drop for
the 22 � i′ < 22.5 apparent magnitude bin (84.47%). The perfor-
mance of the classifier in the case of AGNs may look relatively
poor. However, as already mentioned, we should remember that
the VIPERS selection allows AGNs preclassified as galaxies or
stars based on their colour properties. Keeping this in mind, we
should instead feel satisfied that a high fraction of these AGNs
can be separated into a different section of the five-dimensional
hyperspace from galaxies and stars, when using an AGN training
sample that only consists of 498 objects.

We did not find any crucial misclassifications for the galaxy
sample. The galaxies are classified correctly on a very high
level. For the AGN sample, the contamination of true AGNs
classified as galaxies (8.17%, 7.37%, 10.46%, 14.90% for the
19 � i′ < 20, 20 � i′ < 21, 21 � i′ < 22, and 22 �
i′ < 22.5 bins, respectively) and stars (8.96%, 10.55%, 6.79%,
9.56% for the 19 � i′ < 20, 20 � i′ < 21, 21 � i′ < 22, and
22 � i′ < 22.5 bins, respectively) is significant. For the stellar
sample, the classifier misclassified true stars as galaxies more
often than AGNs. In the future development of this classifier,
we will include the morphological information, as well as emis-
sion/absorption lines, which should improve the algorithm and
increase the percentage of correctly classified sources as well.
Including the morphological information will allow us to con-
struct a classifier that could be applied to purely photometric sur-
veys, similar to the one presented in this paper. Adding spectro-
scopic information to the parameter space would restrict the use
of the classifier, but it would allow for more precise classification
schemes.

6.2. VIPERS objects with redshift confirmation level lower
than 99%

We performed a classification for VIPERS objects with confir-
mation levels lower than 99%. In particular, we used galaxies,
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Table 7. Results of the test of the optical+NIR classifier for GAL3, and AGNs and stars with redshifts measurements on a confirmation level ≥
to 99%.

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
SVM/true Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star
Number of sources 445 69 337 3 271 1340 428 7 667 127 701 2 156 37 263
Galaxy 95.38 12.52 4.17 95.17 7.37 3.27 93.09 10.46 3.42 92.72 14.90 9.09
AGN 2.42 77.34 3.70 2.72 82.08 3.27 4.30 82.75 1.43 5.29 75.54 6.44
Star 2.20 10.14 92.13 2.11 10.55 93.46 2.61 6.79 95.15 1.99 9.56 84.47

Notes. Values marked in bold correspond to the correctly classified objects (galaxies, AGNs, and stars) in i′-based apparent magnitude bins. The
ratio of the classified objects is given in percentage.

Table 8. Results of the optical + NIR classifier for galaxies, AGNs, and stars with redshifts measurements on a confirmation level equal to 95%
(VIPERSZflag = 2).

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
SVM/true Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star
Number of sources 8 33 10 945 75 27 5757 80 145 6226 48 159
Galaxy 84.15 6.25 30.00 94.18 12.00 22.22 92.81 20.25 29.65 58.62 4.17 17.61
AGN 9.75 93.75 40.00 3.49 88.00 29.63 4.41 77.22 11.03 20.56 93.75 18.87
Star 6.10 0.00 30.00 2.33 0.00 48.15 2.78 2.53 59.32 20.82 2.08 63.52

Notes. Objects are not related to the training sample. Values marked in bold correspond to the correctly classified objects (galaxies, AGNs, and
stars) in i′-based apparent magnitude bins. The ratio of the classified objects is given in percentage.

Table 9. Results of the optical + NIR classifier for galaxies, AGNs, and stars with redshifts measurements on a confirmation level equal to 50%
(VIPERSZflag equals to 1).

19 � i′ < 20 20 � i′ < 21 21 � i′ < 22 22 � i′ < 22.5
SVM/true Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star Galaxy AGN Star
Number of sources 35 8 4 355 13 24 2833 35 81 3157 30 139
Galaxy 85.71 50.00 25.00 92.68 23.08 37.50 88.14 20.00 60.56 43.09 23.33 25.90
AGN 11.43 50.00 75.00 3.94 76.92 37.50 7.12 68.57 9.86 31.03 66.67 31.65
Star 2.86 0.00 0.00 3.38 0.00 25.00 4.74 11.43 29.58 25.88 10.00 42.45

Notes. Objects are not connected with the training sample. Values marked in bold correspond to the correctly classified objects (galaxies, AGNs,
and stars) in i′-based apparent magnitude bins. The ratio of the classified objects is given in percentage.

AGNs, and stars from the VIPERS database, with the qual-
ity of the measured redshift, VIPERSZflag, equal to two and
one. VIPERSZflag equals two means that the measured redshift
is fairly secure, with a confidence level �95%. Objects with
VIPERSZflag equal to one are more tentative, and their redshift
measurement was based on weak spectral features and/or con-
tinuum shape. For these objects there is a ∼50% probability that
the redshift could be wrong. A more detailed description of the
VIPERSZflag and quality of measured redshifts can be found in
Guzzo et al. (2013), and Garilli et al. (2012).

Results of SVM classification of objects with VIPERSZflag
equal to two (Table 8) and one (Table 9) show very good con-
formity to the previously user supervised estimations. Galaxies
are classified with agreement to redshift measurements on the
mean level of 76.45% for VIPERSZflag = 2 and 66.08% for
VIPERSZflag = 1.

The ongoing scientific analysis of galaxy evolution and clus-
tering is mainly based on objects that have secure redshift mea-
surements (VIPERSZflag ≥ 2, depending on the topic). With the
SVM classification, we can reconfirm the identify of galaxies
with the lower quality flags and thus increase the number of
galaxies that could be used for more detailed analysis. This may
apply to 4735 galaxies, 58 AGNs, and 86 stars with VIPERSZflag

equal to one8. This method may also reconfirm the class of
9952 galaxies, 177 AGNs, and 160 stars with VIPERSZflag = 2
classified as galaxies, AGNs, and stars by checking the results
twice by different observers, and by our classifier.

One may argue that the VIPERSZflag is related to the redshift
value, not to the identification of the galaxy itself. However, it
should be noted that a majority of sources with low VIPERSZflag
are absorption line systems with noisy, low signal-to-noise spec-
tra. Galaxies with such spectra can be particularly easily mis-
classified as stars during the spectroscopic measurement process,
either automatic or human-supervised. For instance, typical fea-
tures of an elliptical galaxy at z ∼ 1, around the Balmer break,
can be confused with characteristic features of an M-type star.
To confirm the redshift measurements or flag validation, it is
possible to use SED templates for the photometric redshift es-
timation, and to compare spectroscopic redshifts with photomet-
ric ones, but SED-fitting for sources with poor photometry can
be degenerate possibly leading to biased results. In such cases,
an independent confirmation that the position of an object in

8 These numbers were calculated as a sum of galaxies, AGNs, and
stars which were classified to the same class of objects during redshift
validation and by an optical+NIR classifier; marked in bold in Table 9.
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the five-dimensional colour space is actually typical of galaxy,
and actually increases also probability that its redshift has been
assigned correctly.

The number of stars and AGNs in the sample of objects with
VIPERSZflag equal to one and two is very low (a few objects in
the brightest apparent luminosity bin, and a few dozen for ob-
jects with i′ magnitude lower than 21 mag). This fact results
from an initial star/galaxy separation performed by VIPERS.
In the VIPERS database, the stars, which remained after the
colour–colour preselection, are not typical, and they occupy a
similar area to galaxies on the colour–colour plots. Then, that
we can reconfirm the identity of a significant fraction of them
can already be regarded as a success. The spectra of stars with
VIPERSZflag = 1 or 2, which were classified as galaxies by our
classifier, will have to be re-examined since some of them might
also be genuine galaxies.

We should consider that the VIPERS galaxy sample is not
pure and includes some AGN types such as those with narrow-
line features, even for objects with VIPERSZflag > 3. During
the standard redshift measurements process only the broad line
AGNs are being recognised and flagged. This implies that that
our galaxy training sample alco contains, in addition to a pure
sample of normal galaxies, specific types of AGNs, otherwise
difficult to recognise in VIPERS spectra during a standard red-
shift measurements process. The VIPERS hunt for the specific
types of AGNs lurking within the heap of collected sources is
still going on, so we are forced to work with the data composed
of both galaxies and AGNs, at least for now. The contamina-
tion of galaxies and AGNs is most prominent for the faintest
bin (22 � i′ < 22.5), where more than 20% (30%) of objects
classified as galaxies with VIPERSZflag equal to two (one) are
identified as AGNs by an optical+NIR SVM classifier.

We look forward to using SVM methods to add more in-
formation on spectral lines and source morphologies as a very
promising tool to improve classification for fainter sources
and to refine further classes of objects that the software can
discriminate.

7. Comparison with combined spectral energy
distribution fitting and geometric method

As a test of efficiency of the SVM VIPERS classifier, we
compared our algorithm with the star/galaxy separtion of the
VVDS data performed by Coupon (Coupon et al. 2009; Guzzo
et al. 2013). We computed the incompleteness of our galaxy se-
lection as the ratio of true galaxies/AGNs lost after SVM clas-
sification, and we defined contamination as a number of stars
mis-classified by SVM as galaxies/AGNs.

Coupon et al. (2009) base their star/galaxy classification on
the most secure spectroscopic sample from the VVDS F02 and
VVDS F22 fields. The method adopted for the star/galaxy sep-
aration was a combination of a geometric method for objects
brighter than i′ = 21 mag (half-light radius parameter, rh, de-
fined as the radius containing half of the object’s flux, which
was provided by the CFHTLS database), and a combination
of geometric and photometric methods for objects fainter than
i′ = 21 mag, fitting u∗, g′, r′, i′, and z′ bands by a set of the
SED templates with the Le Phare photometric redshift code
(Arnouts et al. 1999; Ilbert et al. 2006). For a detailed description
of this method we refer the reader to Guzzo et al. (2013).

7.1. Sample selection

We performed a star/non-star (where non-star for our classi-
fier means galaxy+AGN) selection using the VVDS Deep F02
survey matched with the CFHTLS photometric catalogue
(T0005 data release). We decided to perform star/galaxy clas-
sification in the VVDS Deep F02 only, because the stellar train-
ing sample used for our classifier was built from stars from the
VVDS Wide F22 field. Only a part of AGNs from the VIPERS
survey was used to train our algorithm. As a result, our stel-
lar/galaxy separation in this field would be treated preferentially,
which could bias the results.

For our test we selected objects with the most secure VVDS
flags (VVDSZflag equal to 3, and 4). In the next step we selected
objects using the same colour/redshift criteria as applied to the
VIPERS survey:

(r − i) > 0.5 × (u − g) or (r − i) > 0.7. (7)

For the more detailed description and the origin of this colour-
based selection, we refer the reader to Guzzo et al. (2013). Then,
we divided our sample into two subsamples:

1. non-stars with spectroscopic redshift �0.01; and
2. stars with spectroscopic redshifts �0.01;

and then into i′ apparent magnitude-binned samples. We stress
that the ratio of AGNs is not known within the galaxy sample in
this case.

7.2. Method

The SVM opt+NIR galaxy/AGN/star classifier was applied to
this data set. We computed the incompleteness and contamina-
tion for selected non-stars (galaxies and AGNs). Since we did
not use geometric selection based on the rh, we decided to per-
form the comparison with the Coupon et al. (2009) method for
only the fainter bins (21 � i′ < 22, and 22 � i′ < 22.5), where
star/galaxy separation was performed based not only on the ge-
ometrical properties of sources, but also by fitting SEDs. We de-
fined the incompleteness (INC) and contamination (CON) ratio,
following Coupon et al. (2009) and Guzzo et al. (2013), as

INC =
NGtrue − NGSVMgood

NGtrue
, (8)

and

CON =
NGSVMbad

NGSVMestimated
, (9)

where

– NGtrue is a total number of spectroscopically classified non-
stars in the VVDS Deep F02 field with the most secure red-
shift quality flag (VVDSZflag3 and 4),

– NGSVMgood – a number of real non-stars (galaxies and AGNs)
classified by SVM algorithm as non-stellar objects,

– NGSVMbad – a number of galaxies/AGNs mis-classified by
our classifier as stars, and

– NGSVMestimated is a total number of objects classified by SVM
as a galaxies or AGNs.
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Table 10. (Galaxy+AGN)/star selection results: the incompleteness and
contamination of the VIPERS galaxy sample (VVDS-Deep F02 field)
expected from the star-galaxy separation process adopted in VIPERS,
and from the SVM opt+NIR classifier.

Apparent magnitude INC CON INC CON
Guzzo et al. (2013) SVM

21 � i′ < 22 2.07% 0.87% 2.13% 2.39%
22 � i′ < 22.5 2.05% 2.00%

7.3. Results

Table 10 shows the results of incompleteness and contamina-
tion of two classifiers applied to the VVDS-Deep F02 sample:
one based on the SEDs and geometrical properties of sources
(Guzzo et al. 2013) and the other based on the SVM method.
Presented values are the expected once for incompleteness and
contamination of the star/galaxy separation in the W1 VIPERS
field.

The incompleteness for both methods is similar (2.07% from
Guzzo et al. 2013 vs. 2.13% and 2.05 for SVM). The stellar
contamination in the SVM method is slightly higher (0.87%
vs. 2.39% and 2.00% for SVM algorithm). Comparing these
results with the results of the self-check of our classifier (see
Table 4), we conclude that the high stellar contamination for
these bins might be related to misclassifications between AGNs
and stars9. Unfortunately, this conclusion cannot be compared
directly with the Coupon et al. (2009) method because theirs
does not classify AGNs.

We checked the real stellar contamination in the W1 field
after VIPERS spectroscopic measurements. In total, 264 from
the 23 360 objects in the 21 � i′ < 22.5 apparent magnitude
bin preclassified as galaxies using the SEDs+rh method from
the PDR-1 catalogue were spectroscopically classified as a stars
with VIPERSZflag � 1. It means that the real contamination
on W1 VIPERS filed for object fainter than i′ � 21 mag is
equal to

CONVIPERS_W1_i′ � 21 =
264

23 360
= 1.13. (10)

This value is between the contamination factor calculated from
Guzzo et al. (2013) and the one given by our SVM opt+NIR
classifier. Taking this difference into account, we conclude that
the results obtained by both methods are similar and very close
to the real values obtained from the spectroscopic observations.

We performed a classification of 264 objects preclassified
as galaxies through the SEDs+rh method, and spectroscopi-
caly classified as a stars. In total 122 sources from this sam-
ple (46.6%) were correctly classified as stars by our algo-
rithm. Taking only sources with very high confidence level of
spectroscopic classification into account (VIPERSZflag � 3;
123 sources), we found that our algorithm shows 74.8% of
accuracy in correctly classifying 92 of those objects as stars.

It confirms that our SVM classification, based on spectro-
scopically measured objects from the VIPERS and VVDS sur-
veys, can provide an efficient star/no-star classifier. This
method is also very fast. The only time-consuming part of the
SVM-based method is the tuning of the classifier, but once the
classifier is trained, all the following classifications are very fast
and can be done without any additional supervision.

9 More than 5% of real AGNs were classified by our algorithm as stars.

8. Conclusions

Application of the SVM algorithm can deliver an excellent (with
accuracy level for self-check test higher that 98% for galaxies,
94% for AGNs, and 93% for stars) classification for three classes
of objects, after a careful selection of the training sample. For our
analysis we constructed two classifiers, with and without near
infrared data using a multidimensional colour hyperspace. A part
of the AGN and star samples were extracted from the VVDS
survey. We have found a significant improvement in the SVM
classification (8% in the total accuracy of the classifier) adding
an NIR colour parameters to our feature vectors.

For the optical+NIR classifier, we obtained very good agree-
ment (93.60%, 81.80%, and 92.52% for galaxies, AGNs, and
stars, respectively) with the VIPERS spectroscopic sample with
flag confidence level of z measurements equal to 95%. What
makes our approach to SVM classification more suitable is that
the enormous amount of excellent quality data, means that we
could create the classifier, which was trained on the part of the
most secure sources, and then test it against the remaining secure
objects to create the most efficient pattern recognition system.
The VIPERS survey gathered a large number of sources (55 358)
with very good spectroscopic measurements, which then were
strictly analysed to obtain the most secure redshifts. This al-
lowed for the choice of the best sample, which could be used
as a basis for the new methods of automatic classification.

SVM classifiers are mostly used in the literature for sepa-
rating two classes of sources (e.g. stars and galaxies). The only
recent application of the SVM to the galaxy/AGNs/stars classi-
fication was performed by Saglia et al. (2012), who trained and
used his classifier for the Pan-STARRS1 data. Comparing the
accuracies of our classifier and those of Saglia et al. (2012) we
found that our self-check results look somewhat better (97%,
95%, 97% vs 97%, 84%, 85% for galaxies, AGNs, stars for
VIPERS and Pan-STARSS1 classifier, respectively). However,
we have to stress that both methods cannot be directly compared
because of initial differences in both surveys. Pan-STARRS1 is
a magnitude-limited survey, which implies a much higher va-
riety of properties of all the sources it contains. In contrast,
VIPERS was preselected to contain only 0.5 < z < 1.2 galax-
ies, witch assures that they form a much more distinct and bet-
ter separated group in a multicolour space. This may facilitate
a separation between galaxies and AGNs, as well as a part of
stars that were re-introduced to the VIPERS target sample as
AGN candidates. On the other hand, the lack of “typical” stars
in the VIPERS database (rejected after colour and half-light ra-
dius preselection) occupying the same colour–colour space as
galaxies may hamper our classification based only on colours,
and decrease the efficiency of our classifier for sources from the
real sample. The difference in the performance with respect to
the PAN-STARS1 SVM method might also be related to the
different broad-band photometry. The tests of accuracy of our
purely optical (u∗g′r′i′) classifier show similar efficiency to the
PAN-STARS1 results (94%, 82%, and 93% for galaxies, AGNs,
and stars from VIPERS survey), while the dimension of PAN-
STARS1 parameter space is higher than ours (4D in case of
PAN-STARS1 and 3D in the case of VIPERS optical classi-
fier). It suggests that the key points of our method might be a
more suitable photometry (u∗ instead of zP1 and yP1 bands) and
division of our sample into apparent magnitude bins.

Our approach allows us to photometrically classify sources
in the VIPERS survey, augmenting the spectral information. By
classifying the sources with low-quality spectra, we can im-
prove the classification and enlarge the samples that may be
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used for analysis. Using the optical+NIR classifier, we con-
firmed the class of 4900 objects with low flags. Further improve-
ment in our classifier by the addition of the morphology and
emission/absorption line information will improve the already
very good performance of galaxy/AGN/star classifier. It will
also allow for developing a more specific galaxy and AGN-type
classifications.
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