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We investigate the phase diagrams of the spin-orbital d9 Kugel�Khomskii model for increasing system di-
mensionality: from the square lattice monolayer, via the bilayer to the cubic lattice. In each case we �nd strong
competition between di�erent types of spin and orbital order, with entangled spin�orbital phases at the crossover
from antiferromagnetic to ferromagnetic correlations in the intermediate regime of Hund's exchange. These phases
have various types of exotic spin order and are stabilized by e�ective interactions of longer range which follow from
enhanced spin-orbital �uctuations. We �nd that orbital order is in general more robust while spin order melts �rst
under increasing temperature, as observed in several experiments for spin�orbital systems.
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1. Introduction

The spin�orbital physics has started over 50 years ago
when Kugel and Khomskii introduced the superexchange
model for degenerate eg orbitals in KCuF3 [1], called the
Kugel�Khomskii (KK) model. In cases when degenerate
orbitals are partly �lled both spins and orbitals have to
be treated as quantum variables that are a priori strongly
coupled to each other [2]. A similar situation occurs in
a number of compounds with active orbital degrees of
freedom, where strong on-site Coulomb interaction U lo-
calizes charge carriers (electrons or holes) and gives rise
to spin�orbital superexchange [3�7]. A principal di�-
culty in such systems follows from enhanced quantum
�uctuations [8, 9] which may destabilize long-range mag-
netic order and could lead either to short-range spin�
orbital correlations or to new quantum phases. Interplay
between spin and orbital interactions stabilizes various
types of magnetic order which coexist with particular or-
bital order, as both in colossal magnetoresistance man-
ganites [10], or in the vanadium perovskites [11]. The the-
oretical approaches are rare and notoriously di�cult [12]
� while in one-dimensional (1D) systems an electron can
break into a spinon and an orbiton [13, 14], explicit treat-
ment of entangled spin�orbital states is required both in
some model systems [15�21], and in realistic models, for
instance to describe the physical properties of the vana-
dium perovskites [22�25]. Therefore, the phase diagrams
of such model systems are very challenging and are the
subject of active research.

Another route which makes the studies of spin�orbital
physics of high interest is frustrated magnetism. Frus-
trated spin models are known to exhibit very interesting
properties and have frequently exotic ground states [26].
In systems with active orbital degrees of freedom such
states may arise from intrinsic frustration of orbital in-
teractions which, unlike the spin ones with SU(2) symme-
try, are directional both in the eg orbital models [27�29]
and in the compass model [30�34] � they contain terms
which compete with one another. Studies of such models

require more sophisticated approaches than the single-
-site mean �eld (MF) approximation or linear spin-wave
expansion. Exact solutions are possible only for some
1D spin�orbital models [35�38] � they also highlight the
importance of quantum e�ects beyond simple classical
approaches.

Coming back to the KK model, it explains the origin
of the orbital order in KCuF3 which is responsible for
the onset of the A-type antiferromagnetic (A-AF) order
at low temperature [5], and the quasi-1D AF Heisenberg
structure with spinon excitations [39�41] at high tem-
perature. In spite of strong interplay between the spin
and orbital degrees of freedom, the energy scales sepa-
rate and the orbital order occurs in KCuF3 below the
structural phase transition at rather high temperature,
TOO ≈ 800 K. This demonstrates a strong Jahn�Teller
coupling between the orbitals and lattice distortions [27],
which plays also an important role in LaMnO3 [42] and
cannot be ignored when the data for real compounds are
explained. It has been also realized that the so-called
Goodenough processes [5, 43, 44], involving excitations
on oxygen (ligand) sites, do contribute to the superex-
change in charge-transfer insulators, and the structure of
the e�ective Hamiltonian is richer than that of the KK
model. However, we shall consider here just the spin�
orbital superexchange models as they arise in the original
derivation [45] from the multiband Hubbard model [46].

While the coexisting A-AF order and the C-type or-
bital order (C-OO) are well established in KCuF3 below
the Néel temperature TN ≈ 39 K and this phase is re-
produced by the spin-orbital d9 superexchange model in
the MF approximation [45], the phase diagram of this
model is still unknown beyond the MF approach because
of strongly coupled spin and orbital degrees of freedom,
and poses an outstanding question in the theory: Which
types of coexisting spin and orbital order (or disorder)
are possible here when the microscopic parameters: (i)
crystal-�eld (CF) splitting of the eg orbitals Ez, and (ii)
Hund's exchange JH, are varied? It has been suggested
that the long-range AF order is destroyed by spin�orbital
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quantum �uctuations [8], but this is still controversial
and also other ordered states stabilized by the order-out-
of-disorder mechanism might arise [9].
The purpose of this paper is to investigate the phase

diagrams of the KK model at increasing dimensional-
ity. Thereby we summarize the results of the earlier
studies for a two-dimensional (2D) monolayer [47], bi-
layer [48], and a three-dimensional (3D) perovskite (cu-
bic) system [49]. We show below that spin�orbital �uc-
tuations and entanglement [7, 15] play a very important
role here and stabilize exotic types of magnetic order in
all these systems. We start with introducing the KK
model in Sect. 2. Next in Sect. 3 we explain two stan-
dard methods used to investigate the phase stability in
di�erent parameter regimes: (i) a one-site MF approxi-
mation (Sect. 3.2), and (ii) a cluster MF approximation
(Sect. 3.3). We show the essential di�erences between the
phase diagrams obtained in these two methods and argue
that new types of exotic spin order arise from the entan-
gled spin�orbital interactions. We also address the types
of order found at �nite temperature in the 2D mono-
layer, where we show that the magnetic order is more
fragile even in the absence of the Jahn�Teller coupling.
In Sect. 4 we explain the origin of the spin order found in
the cluster MF approximation. The paper is summarized
in Sect. 5.

2. Kugel�Khomskii model

The spin�orbital superexchange KK model was orig-
inally introduced for Cu2+ (d9) ions in the perovskite
structure of KCuF3, with S = 1/2 spins and eg orbital
τ = 1/2 pseudospins [1]. The correct multiplet structure
was included only later [45] when it was derived from
the degenerate Hubbard Hamiltonian with hopping t, in-
traorbital Coulomb interaction U and Hund exchange JH
for eg electrons [46]. It describes the Heisenberg SU(2)
spin interactions coupled to the orbital problem, with the
superexchange constant J = 4t2/U ,

H = −1

2
J
∑
〈ij〉||γ

[(
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s
〈ij〉

)(1

4
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where the CF splitting term,

H0 = Ez
∑
i

τzi , (2)

lifts the orbital degeneracy, and the coe�cients,

r1 =
1

1− 3η
, r2 =

1

1− η
, r4 =

1

1 + η
, (3)

(r3 = r2) depend on Hund exchange [45],

η ≡ JH
U
. (4)

Here γ = a, b, c is the bond direction along one of the
cubic axes γ. In a bilayer two ab planes are connected by
interlayer bonds along the c axis [48], while a monolayer
has only bonds within a single ab plane [47], i.e., γ = a, b.
In all these cases spin interactions are described with the
help of spin projection operators on a triplet or a singlet

con�guration on a bond 〈ij〉,

πs〈ij〉 =
1

4
− Si · Si+γ , (5)

πt〈ij〉 =
3

4
+ Si · Si+γ , (6)

and τγi are the orbital operators for the bond direction
γ = a, b, c. They are de�ned in terms of Pauli matrices
in the orbital space, {σxi , σzi }, as follows:

τ
a(b)
i ≡ 1

4

(
−σzi ±

√
3σxi

)
, (7)

τ ci ≡
1

2
σzi =

1

2
(niz − nix) . (8)

These operators act in the orbital space, with the basis
states

|z〉 ≡ (3z2 − r2)/
√
6, |x〉 ≡ (x2 − y2)/

√
2, (9)

and the |z〉 (|x〉) orbital is an �up� (�down�) orbital state.
Finally, Ez in Eq. (2) is the crystal-�eld (CF) splitting
of eg orbitals which favors either |z〉 (if Ez < 0) or |x〉
(if Ez > 0) orbital state occupied by a hole at each site
i. Thus the model Eq. (1) depends on two parameters:
Ez/J and Hund exchange η (4) � we vary them below
to determine the phase diagrams analyzed in Sect. 3.

3. Mean-�eld phase diagrams

3.1. Spin and orbital order

We consider spin and orbital order with up to two sub-
lattices, as well as phases composed of equivalent cubes
(or plaquettes in the 2D system). The spin order is sim-
pler due to the SU(2) symmetry of the Heisenberg in-
teractions, as it gives 〈Szj 〉 = ±1/2 when the z-th spin
components are chosen to determine the broken symme-
try state, so it su�ces to consider AF or FM bonds in
various nonequivalent phases with long-range spin order.
The spin SU(2) interaction is replaced in the MF approx-
imation by local operators at site i interacting with the
MF values for the operators at neighboring sites j,

Si · Sj ' Szi 〈Szj 〉+ 〈Szi 〉Szj − 〈Szi 〉〈Szj 〉. (10)

We consider the magnetic phases depicted in a schematic
way in Fig. 1, where 〈Szj 〉 6= 0: (i) A-AF phase � with
FM order in the ab planes and AF correlations along the
c axis (Fig. 1i), (ii) C-AF phase � with AF order in the
ab planes and FM correlations along the c axis (Fig. 1ii),
(iii) FM phase (Fig. 1iii), and (iv) G-AF phase Néel state
(Fig. 1iv). The �rst two phases, (i) A-AF and (ii) C-AF
phase, contain partly FM bonds which are stabilized by
the orbital order (OO).
On the contrary, due to the absence of SU(2) symme-

try, the OO in the present KK models may involve not
only one of the two basis eg orbital states {|z〉, x〉}, but
also their linear combinations,

|θ〉 = cos

(
θ

2

)
|z〉+ sin

(
θ

2

)
|x〉, (11)

parameterized by an angle θ which de�nes their ampli-
tudes at site i. In the orbital sector we apply then the MF
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decoupling for the products {τγi τ
γ
i±γ} along the axis γ:

τγi τ
γ
i±γ ' 〈τ

γ
i 〉τ

γ
i±γ + τγi 〈τ

γ
i±γ〉 − 〈τ

γ
i 〉〈τ

γ
i±γ〉. (12)

As order parameters we take ta ≡ 〈τa1 〉 and tc ≡ 〈τ c1 〉 for
a chosen site i = 1 (which is su�cient in orbital sector
as tb = −ta − tc) and we assume two orbital sublattices:
each neighbor of the site i is rotated by π/2 in the ab

plane meaning that 〈τa(b)i+γ 〉 = tb(a). A frequently encoun-
tered form of the OO is a two-sublattice structure, with
two orbitals given by angles θA = θ and θB = −θ:

|θA〉i = cos

(
θ

2

)
|z〉i + sin

(
θ

2

)
|x〉i,

|θB〉j = cos

(
θ

2

)
|z〉j − sin

(
θ

2

)
|x〉j . (13)

Examples of simple OO which may a priori coexist with
spin order are shown as well in Fig. 1: alternating orbital
(AO) order with either x-like or z-like orbitals in (a) and
(b), and two ferro-orbital (FO) orders with either z or x
orbitals occupied at each site, in (c) and (d). In reality
the angles for the AO states vary in a continuous way as
functions of the CF parameter Ez/J , and therefore an
e�cient way of solving the one-site MF equations con-
sists of assuming possible magnetic orders and for each
of them deriving the e�ective orbital-only model. Such
models are next compared and the phases with the low-
est energy are found, as presented below for the case of
the 2D monolayer, [47], the KK bilayer [48], and for the
3D cubic model [49].

Fig. 1. Possible types of one- and two-sublattice spin
and orbital order in a cubic system. Left part �
schematic view of four representative spin phases (ar-
rows stand for up or down spins): (i) A-AF, (ii) C-AF,
(iii) FM, and (iv) G-AF one. Right part � schematic
view of four types of orbital order on a cube of the

3D (bilayer) lattice: (a) AO order with 〈τa(b)i 〉 = 1/2
changing from site to site and 〈τ ci 〉 = −1/4, obtained
for Ez < 0, (b) AO order with 〈τa(b)i 〉 = −1/2 changing
from site to site and 〈τ ci 〉 = 1/4, obtained for Ez > 0, (c)
FO order with occupied z orbitals and 〈τ ci 〉 = 1/2, and
(d) FO order with occupied x orbitals and 〈τ ci 〉 = −1/2.

The simplest approximation to obtain the possible
types of order in a spin�orbital model, like the KKmodels
Eq. (1) considered here, is the single-site MF approach
which consists of two steps: (i) decoupling of spin and
orbital interactions, and (ii) subsequent factorization of

interactions of both types on the bonds into (spin or
orbital) operators at a given site i coupled to the MF
terms on its neighboring sites. The values of the projec-
tion operators (5) and (6) depend on the assumed spin
order, and they may be easily eliminated in this approach
when the spin scalar products are replaced by their val-
ues in the MF states, being either 〈Si · Si+γ〉FM = 1/4,
or 〈Si · Si+γ〉AF = −1/4. Taking di�erent types of spin
order (i)-(iv), and assuming the classical average values
of the spin projection operators, one �nds the MF equa-
tions which are next solved for each of the considered
three systems: the 2D monolayer, the bilayer, and the
3D perovskite. Solutions of the self-consistency equa-
tions and ground state energies in di�erent phases can
be obtained analytically, as explained on the example of
the bilayer system in [48].

3.2. Single-site mean-�eld approximation

The simplest approach is a single-site MF approxima-
tion applied to the KK models Eq. (1). It excludes any

spin �uctuations as the spin projectors π
t(s)
〈ij〉 (π

s
〈ij〉) are

here replaced by their mean values, where the dependence
on the bond 〈ij〉 reduces to direction γ in phases with
translationally invariant magnetic order shown in Fig. 1.
The phase diagrams of the KK model follow from the two
competing trends when the parameters, the CF splitting
Ez/J , and Hund exchange η (4) are varied. While in-
creasing CF parameter Ez causes a switch from z to x
orbitals, increasing Hund's exchange favors FM interac-
tions along at least the c axis, and coexisting with the
AO phase.
Using the factorized form of the spin�orbital superex-

change, and the order parameters,

szi ≡ 〈Szi 〉 , tγi ≡ 〈τ
γ
i 〉 , (14)

with |〈Szj 〉| = 1
2 , we determined MF energies of all possi-

ble phases with spin long-range order and optimized val-
ues of the orbital order parameters {tγi }. Consider �rst
the case of vanishing Hund exchange η = 0. In this case
the multiplet structure (3) collapses to a single level and
ri = 1 ∀i. Therefore the excited states with double oc-
cupancies in two di�erent orbitals, e.g. x1i z

1
i at site i, do

not introduce any spin dependence of the superexchange
as the contributions from the triplet and singlet excita-
tion compensate each other, and the only magnetic term
stems from double occupancies at the same eg orbital.
Such terms are AF and resemble the ones derived from
the Hubbard model without orbital degeneracy in the t�
J model [50]. Therefore, one �nds that at η = 0 two AF
Néel phases are degenerate: G-AFz and G-AFx. Actu-
ally, individual contributions to the ground state energy
from the bonds along the ab axes and along the c axis are
quite di�erent in both phases: while the G-AFx phase is
2D, with no coupling between the ab planes and is real-
ized for instance in La2CuO4 [7], the AF superexchange
along the c axis is stronger by a factor of 16 than the one
along the bonds in the ab planes in the G-AFz phase.
Nevertheless, these energy contributions add to the same
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Fig. 2. Phase diagrams of the KK models in the single-
site MF approximation as obtained for: (a) the 2D
monolayer [47], (b) the bilayer [48], and (c) the 3D per-
ovskite system [49]. Shaded dark gray (green) areas
indicate phases with AO order: FM and G-AF phase
for the monolayer (a), and the A-AF, C-AF and G-AF
phases for the bilayer (b) and the 3D perovskite (c) [here
the FM phases which coexist also with the AO order are
not shadded for clarity]. The remaining G-AF phases
(G-AFx and G-AFz) are accompanied by FO order with
fully polarized orbitals, either x (for Ez > E0

z ) or z (for
Ez < E0

z ). The quantum critical point with degener-
ate G-AFx, G-AF, A-AF, and G-AFz phases is found
at (Ez, η) = (E0

z , 0), with decreasing E0
z from the 3D

perovskite via the bilayer to the 2D monolayer.

value in a 3D cubic system [45] and the actual occupied
orbital (FO order) is decided by the value of the CF split-
ting. One �nds the G-AFz phase for Ez < 0 and G-AFx
phase for Ez > 0 (Fig. 2c) � they are degenerate at
the quantum critical point [QCP (E0

z , η) = (0, 0)]. This
re�ects the cubic symmetry of the model (1) at Ez = 0.

Fig. 3. Phase diagrams of the KK models in the cluster
MF approximation as obtained for: (a) the 2D mono-
layer [47], (b) the bilayer [48], and (c) the 3D perovskite
system [49]. Plaquette valence-bond (PVB) phase with
alternating spin singlets in the ab planes is highlighted
in light gray (yellow) � it occurs between the phases
with long-range magnetic order, and the QCP is hid-
den. When strong competition between AF and FM
interactions occurs at increasing η, new phases with ex-
otic spin order are found � they are highlighted in dark
gray (orange).

In two other cases, the cubic symmetry is broken and
the transition between the G-AFz and G-AFx phase
(the QCP) occurs now at �nite Ez: E

0
z = −0.25J and

E0
z = −0.5J for the bilayer (Fig. 2b) and for the 2D

monolayer (Fig. 2a). This follows from the anisotropic
superexchange in the G-AF phases � the magnetic MF
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energy decreases rapidly in the G-AFz phase with weak
exchange bonds and has to be compensated by the CF
term.
Having two degenerate phases at (E0

z , 0) in any of the
considered cases, it su�ces to add an in�nitesimal Hund
exchange η > 0 to destabilize the Néel AF order in favor
of the A-AF phase, with FM interactions in the ab planes
and AF ones along the c axis. Such anisotropic magnetic
interactions are supported by the AO order, with two
di�erent orbitals along each bond (ij) ∈ ab, as shown in
Fig. 1a. The occupied orbitals belong to two sublattices
A and B, as given in Eq. (13). One may wonder whether
the G-AO order depicted in Fig. 1a coexists indeed with
the A-AF order, and the answer to this question goes
beyond the superexchange model (1). In fact, a small
interaction with the lattice (ignored in the present anal-
ysis) selects one of these phases as the orbital alternation
implies lattice distortions around each Cu2+ ion. Such
distortions occur within the ab planes and a better en-
ergy is found when the planes are repeated along the c
axis � this implies the C-AO order coexisting with the
A-AF phase.
As expected, the spin order is G-AF when the CF term

is large and favors one of the two orbitals, while FM in-
teractions appear when the OO changes to AOs and the
spin interactions in the ab planes become FM. In contrast
to the FO phases, the AO order in the shaded phases
in Fig. 2 is more involved and the angle θ in Eq. (13)
is selected by the energy minimization in the respective
phase. In most cases the transitions between the G-AF
and A-AF (or C-AF or FM) are �rst order. The A-
AF phase, stable here in a broad range of parameters
both in the bilayer (Fig. 2b) and in the 3D perovskite
(Fig. 2c), develops from the FM phase in the case of the
2D monolayer (Fig. 2a). In the two former systems an-
other transition to the (anisotropic) FM phase occurs at
large η ≈ 0.25, when the AF terms in the superexchange
terms are dominated by triplet charge excitations. In
all the cases the G-AF spin order occurs as a precur-
sor of the A-AF (FM) phase, when Ez is decreased and
the ab planes become weakly coupled by the AO order.
The C-AF phase occurs in addition in a narrow range of
parameters in between the G-AFx and the A-AF phase
in Fig. 2b and c. This phase is unexpected and suggests
that the phase diagrams derived in better approximations
might be quite di�erent.

3.3. Cluster mean-�eld approximation

Knowing that spin�orbital quantum �uctuations are
enhanced near orbital degeneracy [8], it is of crucial im-
portance to include them when the phase diagrams of
the KK models are investigated. Exact diagonalization
gives exact ground states of �nite clusters and may be
combined with MF approach when a cluster under con-
sideration is in contact with its neighboring clusters via
the MF terms. We developed this so-called cluster MF
approximation for the KK models by embedding a four-
site cluster in the plaquette MF (PMF) used in the 2D

model [47], and a cube in the bilayer case [48]. The most
natural choice for the 3D perovskite is a cube as well,
but here we limit ourselves to four-site clusters [49] (a
plaquette or a linear cluster) to avoid tedious numerical
analysis.
The interactions along bonds which belong to a cluster

considered in each case are treated by exact diagonaliza-
tion, while the bonds which couple the cluster with its
neighbors are decoupled in the MF approximation. In
this way we arrive at the self-consistent MF equations
for the order parameters

sαi ≡ 〈Sαi 〉 , tγi ≡ 〈τ
γ
i 〉 , vα,γi ≡ 〈Sαi τ

γ
i 〉 . (15)

Here we consider two spin components, α = x, z, as the
SU(2) symmetry of the spin interactions may be broken
in a more general way to include some exotic types of
magnetic order obtained in particular for the 2D mono-
layer [47]. The mixed order parameters {vα,γi } are essen-
tial here and in�uence the stability of phases by including
on-site spin�orbital entanglement [48].
The essential qualitative di�erence between the cluster

MF (Fig. 3) and the single-site MF approach (Fig. 2) is
the possibility of spin disorder, realized in between the
phases with spontaneously broken symmetry. De facto,
the phases with long-range spin order (G-AF and A-AF
ones) which coexist at the QCPs are replaced by the pla-
quette valence-bond (PVB) states, as shown in Fig. 3.
These states are characterized by local order on individ-
ual plaquettes within the ab planes, with spin singlets
coexisting with pairs of directional orbitals, 3x2 − r2 or
3y2−r2, along the same bonds, and rather weak coupling
between them. The orbital states behave more classically
and �uctuations between di�erent orientations of singlets
are blocked on each plaquette by the MF terms which
couple this plaquette to its neighbors. By considering
di�erent possible covering of the lattice by such PVB
states we could establish their alternation within the ab
planes, with each pair of neighboring plaquettes forming
a superlattice of plaquettes with alternating horizontal
and vertical singlet bonds. These states are particularly
robust in the 2D monolayer and suppress the FM order in
a broad regime of parameters, as they are not disturbed
here by the perpendicular bonds along the c axis, present
in the bilayer and in the 3D perovskite.
The QCPs in the single-site MF approximation and

the superlattice of alternating plaquettes realized in the
cluster MF may be seen as indications of frustrated spin�
orbital interactions. It is surprising that this frustration
leads not only to spin disorder but also to rather exotic
types of spin order, in particular in the 2D monolayer and
in the 3D perovskite lattice. In both cases the ortho-AF
phase is found in between the G-AF and A-AF phases,
and in the 3D model in addition also the striped-AF and
canted-A-AF phases are stable in the vicinity of the FM
order. Although the present KK models contain only
nearest-neighbor (NN) superexchange interactions, when
the AF and FM contributions compete, the usual NN
superexchange becomes ine�ective and other higher or-
der processes contribute [47, 49], as explained below in
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Sect. 4. The case of the bilayer is di�erent as the bonds
along the c axis contribute here with the full spin singlet
energy when the CF term (Ez < 0) selects the z orbitals.
This dominates over the other terms along the ab bonds
and favors phases with spin disorder in this regime of
parameters: entangled spin-orbital (ESO) phase and en-
tangled PVB (EPVB) phase [48], shown in Fig. 3b.

3.4. Phase diagrams for the monolayer at T > 0

Before analyzing spin�orbital entangled states at tem-
perature T = 0, we emphasize that the spin and orbital
interactions concern quite di�erent energy scales. As an
illustrative example we consider the 2D monolayer, where
the phase diagrams obtained at �nite T demonstrate that
the spin order is robust only in two cases: (i) the G-AF
order due to large superexchange at Ez > 0, or (ii) the
FM order stabilized by large Hund's exchange η > 0.2.
The other spin ordered phases are in�uenced stronger by
thermodynamic spin �uctuations because the exchange
interactions are much weaker in them. The exotic ortho-
AF phase disappears already at T = 0.05J � the para-
magnetic (PM) spins are then accompanied by the FO
order of the z states, selected by the CF term Ez < 0,
see Fig. 4a. In contrast, both phases with spin long-range
G-AF and FMz order which are away from the AF↔FM
transition in the superexchange, are more stable.
Due to the orbital shape, the exchange interactions

between pairs of z orbitals are much weaker, and both
phases with this type of FO order, the G-AFz and FMz
phase, are not found at T = 0.20J , see Fig. 4b. Here a
new PM phase with AO order (PM/AO phase) appears
in cases when Hund's exchange is not strong enough to
give robust FM order. At the same time the PVB phase
shrinks as the spins are too weakly coupled to form stable
spin singlets. Even larger regimes of the PM and PM/AO
phase are found when temperature is further increased to
T = 0.34J , see Fig. 4c.

4. Spin�orbital entangled states

4.1. Origin of exotic magnetic orders

We explain the origin of the exotic magnetic order on
the example of the ortho-AF phase in the 2D monolayer.
This phase occurs in between the G-AFz phase and the
FM phase (either FMz or with the AO order), see Fig. 3a.
Large negative CF splitting, Ez < 0, favors there z or-
bitals, and the CF term (Eq. (2) may be treated as the
unperturbed part of the Hamiltonian), while the superex-
change ∝ J is the perturbation, V ≡ H−H0. The ground
state |0〉 of H0 is the FOz state with z orbitals occupied
by a hole at each site, τ ci |0〉 = 1

2 |0〉, and the spin order
is undetermined. Orbital excitations have a large gap
and the ratio J/|Ez| ≡ |εz|−1 is a small parameter which
may be used here to construct the expansion in powers
of |εz|−1,

Hs ' J
{
H(1)
s +H(2)

s +H(3)
s

}
. (16)

The terms H
(n)
s are spin interaction in the n-th order of

this perturbative expansion. The �rst order term is an

Fig. 4. Evolution of the phase diagram of the 2D KK
model with increasing temperature: (a) T = 0.05J ,
(b) T = 0.20J , and (c) T = 0.34J . The spin order
changes gradually to paramagnetic (PM) under increas-
ing temperature while the OO is more robust.

average H
(1)
s ≡ 〈0|V|0〉 which is just the superexchange

in Eq. (1), projected on the ground state |0〉, i.e., ob-
tained for the FOz state. As expected, this term is the
Heisenberg interaction along the bonds 〈ij〉 ∈ ab,

H(1)
s =

1

25
(−3r1 + 4r2 + r4)

∑
〈ij〉

(Si · Sj) . (17)

For η < 0.155 (η > 0.155) the spin interaction is AF
(FM), and as long as no further contributions are evalu-
ated the AF↔FM transition takes place at η0 = 0.155.

Yet, the magnetic order is determined by higher order

H
(2)
s and H

(3)
s terms for η0 ≈ 0.155. These interactions

involve more than two sites and are obtained by consid-
ering all excited states |n〉, with orbitals �ipped from z to
x � they can be evaluated from the matrix elements in-
volving excited states, 〈n|V|0〉 [47]. We determined them
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Fig. 5. Artist's view of the exotic spin order found in
the ortho-AF phase in the 2D monolayer: (a) one of the
two nonequivalent spin con�gurations, with four spin
sublattices � up/down arrows stand for eigenstates of
〈Sz

i 〉 = ± 1
2
, while right/left arrows for 〈Sx

i 〉 = ± 1
2
; (b)

orbital FOz order is locally modi�ed by orbital excita-
tions from |z〉 (circles) to |x〉 orbitals (clovers), and the
ortho-AF spin order (arrows) is then locally replaced by
spin singlets (ovals).

taking certain number of z-orbitals �ipped to x-orbitals
and derived their average values. All the averages are
taken between orbital states to derive the spin model
Eq. (16). Given that V has non-zero overlap only with
states having one or two NN orbitals �ipped from z to
x, one �nds in second order e�ective interactions which
couple next nearest neighbors (NNN) and third nearest
neighbors (3NN) in the lattice [47].

The NNN interaction in H
(2)
s are AF and would give

two quantum antiferromagnets on interpenetrating sub-
lattices. To explain the spin ortho-AF order shown in
Fig. 5a, i.e., NN spins being perpendicular, one has to

include the third order H
(3)
s as well. Qualitatively new

terms as compared to the lower orders arise then [47] with
connected products of three di�erent Heisenberg bonds.
They provide four-spin couplings and modify the ground
state energy. The �nal result of such an analysis is that
the classical energy is indeed minimized by the con�gu-
rations with angles ϕ = π/2 between the NN spins, as
shown in Fig. 5a.

It is a challenge to write down the ground state of Hs

(16), |AF⊥〉, using the described perturbative scheme. It
turns out that the quantum corrections obtained within
the spin-wave expansion are small and the spin state is
nearly classical. Nevertheless, the spins in Hs are always
dressed with orbital and spin�orbital �uctuations, and
the ground state is rather complex. Indeed, within the
perturbative treatment one obtains the full spin�orbital
ground state shown in Fig. 5b,

|ΨSO〉 ∝

1−
∑
n6=0

Vn
εn

+
∑
n,m 6=0

VnVm
εnεm

− . . .

 |Φ0〉 , (18)

where Vn ≡ |n〉 〈n| V, εn are excitation energies, and
|Φ0〉 ≡ |AF⊥〉|0〉 is the disentangled classical (Néel-like)
state of Fig. 5a. This classical state is dressed with both
orbital and spin�orbital �uctuations via the terms which
stem from the operator sum in front of |Φ0〉 in Eq. (18).
A simpler form is obtained when the purely orbital �uc-

tuations are neglected and density of spin�orbital defects
is assumed to be small, one �nds

|ΨSO〉 ' exp

− 1

|εz|
∑
〈ij〉||γ

Dγij

 |Φ0〉 , (19)

where

Dγij =
{
−Aσxi σxj +B

(
σxi + σxj

)
sγ
}
πsij (20)

is the spin�orbital excitation operator on the bond 〈ij〉,
with A = 3(r1 + r4)/2

6 and B =
√
3(r1 + 2r2 + 3r4)/2

5.
Both terms in Eq. (20) project on a NN spin singlet, but
the �rst one �ips two NN z-orbitals while the second one
generates only one �ipped orbital. The density of entan-
gled defects in Fig. 5b increases when |εz| is decreased
and the ortho-AF phase is gradually destabilized.
Finally, it is worth to mention that the exotic ortho-AF

order was not only predicted by the PMF and explained
by the perturbative expansion, but its existence was also
corroborated by a variational calculation with the entan-
glement renormalization Ansatz (ERA). It is remarkable
that the range of stability of the ortho-AF phase is simi-
lar in both Ansätze in Fig. 6. Actually, this exotic phase
is even more robust in the ERA than in the PMF.

Fig. 6. Two variational Ansätze used to study the 2D
ortho-AF phase: (a) the plaquette MF (PMF), and (b)
the entanglement renormalization Ansatz (ERA). Black
dots are lattice sites, P's are variational wave functions
on 2 × 2 plaquettes, and U 's are variational 2 × 2 uni-
tary disentanglers. The di�erence between PMF and
ERA is the additional layer of disentanglers between the
plaquette wave functions P and the physical degrees of
freedom. Their role is to introduce some entanglement
between di�erent plaquettes or to disentangle partially
the plaquettes before the plaquette product Ansatz is
applied. This �gure is reproduced from [47].

4.2. Examples of 3D exotic spin order

In the 3D perovskite lattice the ortho-AF phase is
found as well in the narrow range of (Ez, η) where the
spin order changes classically from the G-AF to A-AF
one, and the order is FOz (Fig. 5a) in ab planes, and AF
between the consecutive planes along the c axis.
When η is further increased within the A-AF phase,

one �nds a second magnetic transition, and two exotic
phases are found: (i) the striped-AF phase characterized
by symmetry breaking between the a and b directions
in the orbital and spin sectors for Ez > 0, see Fig. 7a,
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Fig. 7. Two exotic spin orders realized by the 3D per-
ovskite KK model at large Hund's exchange η > 0.2: (a)
striped-AF order, with AF order along the c axis and
angle Φa between the NN spins along the a axis (spins
are AF along the b axis); (b) canted-A-AF phase with
FM order in ab planes and spin canting angle Φc along
the c axis. These phases are precursor states to the FM
phase at large η > 0.2, see Fig. 3c.

and (ii) the canted-A-AF phase when the spins stay FM
within the ab planes, but rotate gradually from the AF
to FM con�guration along the c bonds with increasing
value of η, see Fig. 7b. Both phases are characterized
by the spin angle � the striped-AF phase by Φa along
the a axis, and the canted-A-AF phase by Φc along the
c axis. The two phases shown in Fig. 7 are quite di�erent,
as the CF term breaks the symmetry in the orbital space.

The transition to the FM order for negative CF split-
ting involves the intermediate canted-A-AF phase, shown
for Ez = −0.5J in Fig. 8a. Here the spin order is already
FM in the ab planes, so it su�ces to analyze the phase
transition using a linear embedded cluster [49]. The evo-
lution of the spin order is captured by two quantities:
the spin canting angle Φc along the c axis, and the total
magnetization |s|, de�ned as follows:

cos θ =
1

s2
(sx1s

x
2 + sz1s

z
2) , (21)

|s| ≡
√

(sx)
2
+ (sz)

2
. (22)

In the canted-A-AF phase cosΦc interpolates smoothly
between limits cosΦc = −1 in the A-AF phase and
cosΦc = 1 in the FM one. Figure 8a shows also that
the spin order parameter |s| is almost classical (|s| ' 0.5)
in the A-AF phase as the quantum corrections are here
rather low � the quantum spin �uctuations decrease fur-
ther across the canted-A-AF phase and �nally one �nds
the exact value |s| = 0.5 in the FM phase.

The second example of the exotic spin order found in
the 3D KKmodel considered here is the striped-AF phase
which gradually turns into the G-AF Néel order when
Ez increases. In this case the plaquette cluster in an ab
plane is more appropriate as it captures the changes of
the spin order here. The orbital order parameters {ta, tb}
(not shown) suggest the symmetry breaking within the
ab planes in the striped-AF phase which is restored at the

Fig. 8. Spin order parameters |s| (22) and cosines of
the angles between two neighboring spins in the two
exotic phases found in the 3D perovskite (Fig. 7): (a)
evolution from the A-AF via the canted-A-AF to FM
phase with increasing η at Ez = −0.5J , and (b) evolu-
tion from the striped-AF to G-AF phase with increasing
CF splitting Ez/J , found at η = 0.22; here spin order
|s| is signi�cantly reduced by quantum �uctuations.

transition to the G-AF phase. The spin order is given by
four sublattices, two of them shown in Fig. 7b, and the
other two related to them by spin inversion.
The cosines of two angles between the neighboring

spins along the a and b axis (21), Φa(b), show that the AF
order along the b axis is independent of Ez, see Fig. 8b.
In the G-AF phase one �nds cosΦa(b) = −1, as expected
for the uniform antiferromagnet. The total magnetiza-
tion 0.24 < |s| < 0.30 (22) is almost constant and in-
creases monotonically with increasing Ez. This demon-
strates that the essential physics of the striped-AF phase
is described by the spin angles, but also that the order
parameter is much softened by spin �uctuations on the
plaquettes within the ab planes.

5. Summary

We have investigated the phase diagrams of the spin-
-orbital d9 Kugel�Khomskii model by the mean-�eld and
perturbative methods for increasing system dimensional-
ity: from the square lattice monolayer, via the bilayer to
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the cubic lattice. In each case we have found strong com-
petition between di�erent types of spin and orbital order,
with entangled spin�orbital phases at the crossover from
antiferromagnetic to ferromagnetic correlations in the in-
termediate regime of Hund's exchange. These phases
stem from the quantum �uctuations of the ordered or-
bitals that couple to spins and produce novel types of
spin bonds including non-trivial four-spin interactions.

For the 2D monolayer the ortho-AF exotic phase was
found, which is characterized by a non-collinear spin or-
der where neighboring spins are perpendicular to each
other and orbitals are strongly polarized in a FOz con-
�guration. Such phases are excluded in the single-site
mean-�eld approach, and could not be found before [51].
Both cluster mean-�eld and a more involved ERA involv-
ing entanglement between clusters con�rmed stability of
the ortho-AF phase in between the AF and FM phases.
On the other hand, the perturbative treatment in the
orbital space was introduced to get e�ective spin Hamil-
tonian in the ortho-AF phase and to provide the physi-
cal insight into mechanism stabilizing spins being at the
same time AF on two interpenetrating sublattices and
perpendicular for nearest neighbors when virtual orbital
�ips occur and are accompanied by spin singlets.

The case of a bilayer turned out to be rather spe-
cial and di�erent from both the 2D and 3D case due
to its strong tendency towards formation of interpla-
nar singlets. Unlike the ortho-AF phase, the entangled
phases found here are located in the intermediate cou-
pling regime and are not triggered by a magnetic phase
transition. Apart from this, the location of the long-
range order phases and the plaquette valence bond phase
is already quite similar to the 3D case where the ortho-
AF phase is found again together with two additional
phases with exotic spin order induced by orbital �uctua-
tions. These striped-AF and canted-A-AF phases appear
here at relatively high values of Hund's exchange in the
vicinity of the FM phase, and essentially by the same
mechanism as the ortho-AF phase in the 2D case.

The most striking feature in the phase diagram of the
3D model is that for negative Ez, the transition from the
fully AF to the fully FM con�guration takes place grad-
ually with growing Hund's coupling η, �rst the ab planes
become FM passing through the exotic ortho-AF phase,
and next the remaining bonds along the c axis become
FM passing through the canted-A-AF exotic phase. In
contrast, for large positive Ez the AF and FM phases
remain unchanged and are connected by a discontinuous
transition. The only exception occurs at intermediate
Ez > 0 where a striped-AF phase occurs. We argue that
this last exotic phase with anisotropic AF order in the
ab planes is a positive-Ez counterpart of the ortho-AF
phase where the e�ective spin interaction of di�erent or-
ders compete with each other leading to frustration and
anisotropy.

Finally, the 2D monolayer system served us as a testing
ground of the thermal stability of spin and orbital orders
found in the KK model. We have found that orbital order

is more robust in general and spin order melts �rst under
increasing temperature, as for instance in LaMnO3 [42].
Robust orbital interactions occur also in triangular lat-
tice, as for instance in LiNiO2 [52]. The most fragile is
the exotic spin order found in ortho-AF phase which may
be expected taking the energy scales of the e�ective spin
couplings. The other factor that also strongly decreases
the temperature of spin melting may be the orbital order
which is incompatible with lattice geometry and strongly
suppresses in-plane couplings, such as FOz order found
for negative crystal-�eld Ez < 0. In contrast, the plaque-
tte valence bond phase is a robust type of order due to
in-plane singlets. We believe that these general conclu-
sions are valid for other related models as well.
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