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1 Introduction

Investigations of the charge symmetry breaking (CSB) in strong interaction is one of the
most challenging topics in hadron physics. The charge symmetry is an invariance of a
system under a rotation by 180◦ around the second axis in the isospin space. In quantum
chromodynamic (QCD) the charge symmetry requires the invariance under exchange of
up and down quarks. However, this quarks have different masses and charges, therefore the
charge symmetry is not a strict symmetry of the QCD Lagrangian. It may be expected that
this elementary sources of the CSB will show up also on the hadronic level. In this way
CSB studies may help to connect quark-gluon dynamics to hadronic degrees of freedom,
allowing in particular to access the mass difference of up and down quarks. Once those
contributions can be treated theoretically, a study of CSB in low energy hadron physics is
a unique window to the quark masses and thus to fundamental parameters of the standard
model. Desire to find such interlink motivated extensive investigations in which a lot of
attention was paid to the experimental and theoretical studies of CSB [1].

Many studies comprise investigations of various nuclear systems and reactions. The
first evidence of CSB comes from the difference of the low energy nucleon-nucleon scat-
tering lengths of n-p and p-p systems [2] in the same spin singlet state after necessary
corrections for electromagnetic effects. The experimentally determined (Coulomb cor-
rected) 71 keV difference of the binding energies of 3H and 3He may arise from the
CSB [2]. Unfortunately in both discussed cases the results are strongly influenced by non-
negligible theoretical uncertainties due to the Coulomb corrections. Such problems do
not arise for neutron-proton elastic scattering where the effect of electromagnetic inter-
action is negligible. In these studies the CSB manifests as non vanishing difference of
analysing powers for neutron and proton. Very small difference of analysing powers was
observed [3–6] indicating CSB in nucleon-nucleon scattering, however still large contro-
versies exist about the origin of CSB in nucleon-nucleon scattering [7–10]. From all such
studies it is known that at the nuclear level charge symmetry is broken due to the presence
of the electromagnetic effects and due to mass difference in isomultiplets of nucleons and
mesons. Net effect of CSB on strong interaction is strongly obscured when investigating
nuclear systems. There are, however, some nuclear processes in which CSB is dominated
by properties of strong interaction, the best candidates being charge symmetry forbidden
dd → 4Heπ0, which was searched for since many years.
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Only recently the first observation of dd → 4Heπ0 reaction was reported [11] for the
beam energies very close to the reaction threshold. At the same time the information on the
CSB in np→ dπ0 manifesting as the forward-backward asymmetry became available [12].
Those new data triggered also advanced theoretical calculations, which provides the op-
portunity to investigate the influence of the quark masses in nuclear physics [13]. In order
to access such information the advanced calculation within effective field theory are nec-
essary. This becomes possible with the use of chiral perturbation theory (ChPT) [14, 15],
which has been extended to pion production reaction [16]. The first steps toward theo-
retical understanding of dd → 4Heπ0 reaction have been taken [17, 18]. It was found that
the existing data are not sufficient for the precise determination of the parameters of the
ChPT and the new data are required. These new data should comprise the measurement
of charge symmetry forbidden dd → 4Heπ0 reaction and charge symmetry conserving
dd → 3Henπ0 channel. The measurement of first reaction should be performed at beam
energy higher than used in Ref. [11], preferentially with determination of the polarization
observables. This would enable to study the contribution of the higher partial waves al-
lowing to extract relevant parameters of ChPT. The measurement of the second reaction
is necessary in order to study the relevance of the initial and final state interaction, which
strongly influence the results for dd → 4Heπ0 reaction.

The goal of this thesis was experimental investigation of dd → 3Henπ0 reaction.
These studies are an important part of the general program of investigation of CSB in
the dd → 4Heπ0 reaction forbidden by charge symmetry. As there are no experimental
data whatsoever for the dd → 3Henπ0, already the information on the total cross section
may contribute significantly to the understanding of the CSB sources in the forbidden re-
action. The measurements of the full differential cross section for dd → 3Henπ0 reaction
may deliver even stronger constraints for the theoretical analysis of the dd → 4Heπ0 reac-
tion. The measurement presented in this thesis is also a first step toward the experimental
investigation of dd → 4Heπ0 reaction including the polarization observables, which are
planned at COSY in the future.

In this thesis the first results for the dd → 3Henπ0 reaction are presented. The ex-
periment was performed with the WASA detection system at COSY accelerator. Chapter
2 is dedicated to the presentation of the present knowledge on the dd → 4Heπ0 reaction
including the existing data and their theoretical analysis. The problems arising from this
analysis are presented, which call for the new data on the charge symmetry conserving
reaction. In chapter 3 the WASA detection system at the Cooler Synchrotron in Jülich is
introduced with extended information on the components used in the present experiment.
Chapter 4 describes methods used in the data analysis and the first steps necessary for
identification of the investigated reaction. Chapter 5 is devoted to the phenomenologi-
cal model necessary for the acceptance correction of the experimental data. This model
was also used to extract physical information about the reaction mechanism. In chapter 6
the analysis of the data is presented. Final experimental distributions and the comparison
of the obtained experimental results with the phenomenological model are discussed in
chapter 7. Finally, the summary and conclusions resulting from this work are presented in
chapter 8.



2 Data and Theory Overview

The most promising data allowing to access the CSB effects in the strong interaction
for hadronic systems are the forward-backward asymmetry measurement in np → dπ0

reaction [12] and cross section measurement for dd → 4Heπ0 reaction [11]. In those in-
vestigated systems the electromagnetic effects are negligible, allowing direct observation
of CSB in strong interaction.

The measurement of np → dπ0 reaction was performed at TRIUMF with a 279.5
MeV neutron beam. This beam energy corresponds to only 2 MeV excess energy. There-
fore, with the use of magnetic spectrometer, the whole angular distribution was measured
by detecting scattered deuterons. CSB manifests as a non-vanishing forward-backward
asymmetry:

Afb =
dσ(θ)−dσ(π−θ)
dσ(θ)+dσ(π−θ)

(2.1)

where θ is the c.m. deuteron scattering angle. If charge symmetry holds the forward-
backward asymmetry should be zero. This is shown schematically in Fig. 2.1 where the
considered reaction is drawn also when exchanging up and down quarks (which cor-
responds to the exchange of proton and neutron). In order to achieve better accuracy,
only angle integrated forward-backward asymmetry was extracted with the final value of
Afb = [17.2±8.0(stat)±5.5(syst)] ·10−4. The reached accuracy is not very high with the
statistical deviation of only two standard deviations from zero.

Figure 2.1: Schematic drawing of the np → dπ0 reaction demonstrating the symmetry of
the process when exchanging up and down quarks.
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Among various processes in which CSB may be investigated the reaction dd → 4Heπ0

is very well suited for such studies. Since deuteron and 4He have isospin equal to zero and
π0 has isospin equals to one, it is obvious that this reaction is forbidden without isospin
symmetry breaking. In self-conjugate systems (which have third isospin component equal
zero) a charge symmetric Hamiltonian cannot connect states which differ in total isospin.
Therefore the reaction dd → 4Heπ0 is also forbidden if charge symmetry holds. The only
possibility of CSB due to electromagnetic interaction is isospin 1 admixture to the ground
state of 4He nuclei. Such an isospin impurity was estimated to be very small [19] even if
not discovered up to now isospin 1 excited state exists. Therefore the observation of the
dd → 4Heπ0 reaction gives the clear evidence of CSB in the strong interaction only.

Attempts to measure dd → 4Heπ0 reaction have been undertaken since many years.
The early measurement of this reaction yields only the upper limit for the differential cross
section (see Ref. [20] and references therein). In one experiment only at deuteron incident
energy of 1100 MeV this reaction was observed [21] with the differential cross section of
dσ(θc.m.=107o)/dΩ = 0.97 ± 0.20 ± 0.15 pb/sr. However, this result was questioned even
by some participants of the experiment (Ref. [22]).

The situation was clarified by measurement of the total cross for dd → 4Heπ0 reac-
tion at beam energies very close to the reaction threshold [11]. The measurement was
performed at two beam energies corresponding to 1.4 MeV and 3.0 MeV excess energy.
The background was substantially reduced by coincidence measurement of all reaction
products. Outgoing 4He nuclei were detected with the magnetic spectrometer and π0 was
detected with neutral particle calorimeter via its two γ decay. The total cross section re-
ported is 12.7±2.2 pb for lower beam energy and 15.1±3.1 pb for higher beam energy.

Those two independent observations of CSB effects in the np → dπ0 and the dd →
4Heπ0 reactions should be analysed within an appropriate theoretical framework in order
to extract the information about the microscopic sources of CSB such as e.g. up and down
quarks mass difference. A theory collaboration group, aiming at calculation of the CSB
effects in hadronic processes has been formed and the work on the theoretical frontier
is in progress. The most appropriate theory for such a goal is the Chiral Perturbation
Theory [15]. The formalism uses the fact the the interaction of pions with matter is largely
controlled by the approximate chiral symmetry of QCD, with pions being the Goldstone
bosons resulting from the spontaneous breakdown of this symmetry. In this effective field
theory quark and gluon degrees of freedom are replaced by hadronic degrees of freedom.
The most general Lagrangian with symmetries the same as the QCD Lagrangian may be
constructed with the use of the power expansion in the momenta small to the scale of
about 1 GeV. Up to now most work within ChPT was done for the two pion system, the
πN system and, more recently, the NN system [14, 23]. In addition, a promising scheme
was derived to also analyze pion production in nucleon-nucleon collisions [24–26], and
recently to meson production in various reactions [16]. At the present stage ChPT may be
also applied to light nuclei and other many-body systems [27]. Since chiral perturbation
theory allows for a systematic analysis of hadronic reactions, also the breaking of QCD
symmetries can be addressed quantitatively, one example being the isospin. In this way
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ChPT has become an ideal tool for the theoretical analysis of CSB in np → dπ0 and
dd → 4Heπ0 reactions.

The first calculations conducted for np → dπ0 using ChPT [28] lead to the predicted
effect much larger than observed experimentally resulting from charge symmetry viola-
tion in π0-nucleon interaction. The recent calculations [29] are successful in describing
total cross sections, the shape of angular distributions and the analysing power for pion
production reactions np → dπ0 and pp → dπ+. However, they fail in reproducing the
forward-backward asymmetry induced by CSB overestimating the data by 2.4 standard
deviations. Therefore further theoretical analysis is required and more precise data on
CSB in this reaction are necessary.

The first calculations using ChPT were performed for the dd → 4Heπ0 reaction [17]
using very simplified model what allowed to identify the most important ingredients nec-
essary for more precise calculations. It was found that at the leading order (LO) only
charge symmetry violation in pion re-scattering contributes, there is no next-to-leading-
order (NLO) contribution and some next-to-next-leading-order (NNLO) contributions
were identified. The diagrams for LO contributions are shown in Fig. 2.2. Diagram (a)
in this figure contributes for π0 − 4He relative angular momentum equals 0 (s-wave) and
equals 1 (p-wave). Diagrams (b) and (c) may contribute for the p-wave only. Calculations
were performed for s-wave using plane wave approximation in the entrance channel and
simplified 4He nucleus wave function. It was found that the contribution from the LO
term becomes negligibly small due to spin-isospin selection rules and the symmetry of
4He nucleus wave function. The NNLO terms result in the cross section by one order of
magnitude smaller than the experimental one. A value closer to the experimental cross
section can be obtained only for surprisingly large value of the graph used to estimate
the influence of the short range physics. More reliable calculations were performed [18]
using realistic two- and three-nucleon interactions together with the recent advantages of
the four-body theory [30–32]. That allowed to properly treat effects of deuteron-deuteron
interaction in the initial state and to use realistic 4He bound-state wave function. This
calculations confirmed that for s-wave the LO contribution is negligible and at NNLO
the cross section is of the same order as the value determined experimentally. One of
the most important issue was the identification of dramatic influence of initial-state inter-
actions. It necessitates in the new independent measurements providing information on
pion-production reactions with the same initial state.

At NNLO new terms with unknown strength contribute to s-wave pion production
in the dd → 4Heπ0 reaction. Their strength can be fixed by the combined analysis of
forward-backward asymmetry observed in the np → dπ0 reaction and the dd → 4Heπ0

reaction. However, in order to get a non-trivial prediction of CSB in pion production an
additional observable is needed. This missing observable may be provided by CSB p-wave
pion production in dd → 4Heπ0 reaction. In this case the coupling strengths are given by
the leading CSB π-nucleon amplitude (diagram (a) in Fig. 2.2) and the leading CSB π-
nucleon-nucleon vertex (diagram (b) and (c) in Fig. 2.2). However, similarly as for the
s-wave pion production, the contribution of diagram (a) is suppressed as a consequence



6 Data and Theory Overview

Figure 2.2: Leading-order diagrams inducing strong CSB for dd → 4Heπ0 reaction. Dia-
gram (a) occurs for s- and p-waves, while diagrams (b) and (c) contribute only for p-wave.
The crosses indicate the occurrence of CSB, the dots represent a leading-order charge in-
variant vertex. Dashed lines denote pions, single solid lines denote nucleons and double
solid lines denote ∆.

of selection rules. Therefore p-wave pion production provides direct access to the CSB
π-nucleon-nucleon coupling constant.

The presented overview of the existing data and the status of the theory demonstrate
the necessity of the new measurements that would allow to complete the program of the
CSB studies for hadrons. In order to successfully carry out this program and especially to
isolate the isospin violating matrix elements of interest, more information on the related
isospin conserving interactions is needed. For the dd → 4Heπ0 reaction a close relative is
given by dd → 3Henπ0. Especially since the initial state is the same, from this reaction
important constraints will follow for the initial state interaction to be used in the analysis
of the isospin violating channel. In addition, experimental information on this reaction
will at the same time help to show how well in general the isospin conserving part of the
four nucleon system is understood. In turn the dd → 4Heπ0 reaction should be measured
at higher beam energy, preferentially with the polarization observables which allow to
extract unambiguously the p-wave contribution directly from the experimental data. This
defines the whole experimental program which can be realized at the COSY accelerator.
The results of this thesis are the first important step towards the successful execution of
the CSB studies.



3 Experimental Setup

The experiment which is described in this thesis was carried out at the Institute for Nuclear
Physics of the Forschungszentrum Jülich, Germany. For the measurement the Cooler syn-
chrotron COSY together with the WASA detection system was used. WASA (Wide Angle
Shower Apparatus) was originally installed at the CELSIUS storage ring at the TSL in
Uppsala, Sweden [33] and was operated until the shutdown of the accelerator in 2005.
After the end of the experimental program [34] the facility was shipped to Jülich, Ger-
many. The move was motivated by several significant factors which allowed to continue
and enhance the physics program foreseen for CELSIUS. Major advantages of use of the
WASA detector in combination with COSY are:

• significantly higher beam momentum up to 3.7 GeV/c ( at CELSIUS beam momentum
was limited up to 2.1 GeV/c )

• polarized and phase space cooled proton and deuteron beams.

Combining COSY and WASA together we obtained multi-purpose detection system, fo-
cused on the investigation of the properties and interactions of nucleons in the strongly
nonpertubative region of QCD [35]. After successful installation and first commissioning
runs in the fall of 2006 WASA has been taking data since April 2007.

In this chapter a technical overview of the accelerator and the detector systems is
given, moreover, the unique pellet target and the data acquisition system is described. The
chapter closes with a section where a short overview is given on the different software
tools which were used throughout the analysis.

3.1 Accelerator System

The accelerator and storage ring COSY (COoler SYnchrotron) [36] at the Forschungszen-
trum Jülich can provide high quality polarized and unpolarized, proton and deuteron
beams in the momentum range from 295 MeV/c up to 3.7 GeV/c, corresponding to an
energy range between 45 MeV and 2.94 GeV for protons, and from 67 MeV to 2.23 GeV
for deuterons. The COSY operates in cycles. In each cycle, first the H− or D− ions are
preaccelerated in the cyclotron JULIC and injected into the storage ring via a charge ex-
changing stripper carbon foil. In the standard operation up to 1011 particles can be stored
in the ring, yielding typical luminosities of 1031 cm−2 s−1 for internal experiments. After
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filling the ring the ions are accelerated until they achieve desired energy, then the mag-
netic field is kept stable and particles are stored for a certain time. This part of the cycle is
called flat top. At the end of the flat top, the beam is dumped and the dipole magnets are
ramped down to injection level, so that a new cycle can begin.

The synchrotron is equipped with two cooling systems. Electron cooling is applied up
to 645 MeV/c, while in the higher momentum regime the stochastic cooling [37] is used.
They guarantee high quality beams with small emittance and momentum spread which
can be used for internal (one of which is the WASA detector) end external experiments. In
addition to the cooling of the beam a barrier bucket cavity [38] can be used, to counteract
the energy loss induced by the interaction of the beam with the target. The method is quite
efficient in case of a target thickness ≥ 1015 atoms/cm2 as used by the WASA facility. The
layout of the facility is shown in Fig. 3.1. The technical parameters of COSY are gathered
in Table 3.1.

Figure 3.1: The view of the COSY–facility.
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The COSY storage ring
circumference 184 m
number of magnets 24 dipoles, 54 quadruples
momentum range 0.295 GeV/c – 3.7 GeV/c
cooling electron (pbeam <645 MeV/c)

stochastic (pbeam >1.5 GeV/c)
momentum resolution 10−3 without cooling

10−4 with cooling
number of particles stored 1011 (uncooled, unpolarized)

Table 3.1: Characteristic features of the the COSY synchrotron.

3.2 Pellet Target

The key experiments proposed in the WASA program set high demands on the perfor-
mance of the target system. Since we want to study rare processes, there are several things
which are mandatory for the type of the target to be used. First of all the density should
be as high as possible to guarantee luminosities of the order of 1032 cm−2 s−1. In parallel
the background conditions, and secondary interactions within the target have to be kept
on low level. To cope with these demands, it is not possible to use conventional gas or
cluster jet target, instead pellet target can be used.

The pellet target system was originally developed for the CELSIUS experiment [39]
and installed in the TSL in Uppsala, Sweden. After the shutdown of the accelerator the
pellet system was transferred to Juelich and assembled in the COSY hall. In 2006, after
a lot of tests and optimization steps, first droplet beam was obtained. The construction of
the target station have been designed in such a way, that only a thin tube used to guide the
pellets is inside the detector while the rest of the apparatus is located outside. This is an

Figure 3.2: The WASA Pellet Target system.
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important prerequisite for 4π detection. Figure 3.2 shows a schematic of the Pellet Target
system. The pellets (hydrogen or deuterium) are produced in the pellet generator where
a high purity liquid jet is broken up into uniformly sized and spaced micro spheres by
means of acoustic excitation of the jet nozzle. The droplets freeze by evaporation in the
droplet chamber and form pellets which are injected through capillary into the vacuum
chamber. Here, the pellet beam is collimated by the skimmer and travels down the narrow
pellet tube to the scattering chamber. After passing the interaction point with the COSY
beam, the pellets are collected in the cryogenic pellet dump situated below the detector.
Some characteristic features of the target are listed in Table 3.2.

The Pellet Target system
pellet diameter ' 35 µm
pellet frequency (at interaction vertex) 5 - 12 kHz
pellet - pellet distance 9 - 20 mm
pellet stream diameter at vertex 2 - 4 mm
pellet velocity 60 - 100 m/s
effective target thickness > 1015atoms · cm−2

Table 3.2: Performance of the Pellet Target.

During the winter shutdown in 2007, first deuterium pellets were produced at COSY,
however, at that time the problem with the blocking of the glass nozzle occured. After a lot
of investigations the problem was identified with the help of the infrastructure established
for glass nozzle manufacturing in the Central Department of Technology (ZAT) at the
Forschungszentrum Jülich. It was found that blocking the nozzles was due to debris from
sinter filters at the gas input side of the nozzle. This material problem was eventually
solved prior to the experiment described in this thesis. In that way a reduction of time
necessary for the target regeneration from approximately 12 to only 3 hours was achieved.
With a stable pellet beam a deuterium target thickness close to 4·1015 atoms · cm−2 and
pellet rates up to 104 pellets/s were obtained.

3.3 WASA Detector Setup

The design of the WASA detector is optimised to tag a reaction by measuring the forward-
going recoil nucleon and nuclei by an array of plastic scintillators and straw tube layers
and to identify decay patterns of produced mesons by a straw tube tracker in a solenoidal
magnetic field, a barrel of plastic scintillators and a close to 4π electromagnetic calorime-
ter (see Fig. 3.3). Performing exclusive or semi-exclusive measurements allows an effec-
tive discrimination of background channels and a clean event identification.

The position (x,y,z) in the WASA detector is given in a right handed rectangular coor-
dinate system with origin positioned close to the intersection of the pellet beam with the
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circulating COSY beam. The Z- axis is directed along the beam. The X- and Y- axes are in
the plane orthogonal to the beam. The X- axis is directed outwards from the beam ring in
the horizontal plane while the Y- axis is directed upwards. Two angles can be defined in
this coordinate system; the angle measured towards the Z- axis is the polar or scattering
angle θ, the angle in the (X,Y) plane is the azimuthal angle ϕ.

Figure 3.3: Schematic layout of the WASA detector as installed at COSY. The abbrevia-

tions used for different detector are explained in the subsequent section.

3.3.1 Forward Detector

The main purpose of the Forward Detector (FD) is the detection of scattered projectiles
and charged recoil particles like protons, deuterons and He nuclei. It comprises a set of
plastic scintillator detectors allowing for particle identification by means of energy loss
and for the determination of the total energy. In addition it consists of a straw tube tracker
which provides a precise measurement of angles. Combining these information altogether,
the forward detector is capable to reproduce the complete 4-vector of a particle. All FD
plastic scintillators may supply information for the first level trigger logic. Some proper-
ties of the forward detector are summarized in Table 3.3.

3.3.1.1 Forward Window Counter

The first subdetector of the Forward Detector in beam direction is the Forward Window
Counter (FWC). It is located directly behind the scattering window. The FWC consist
of two layers made of 3 mm thick BC408 plastic scintillator material (Fig. 3.4). Each
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element in first layer is inclined by 20◦ relative to the plane perpendicular to the beam to
follow as close as possible the conical shape of the exit window of the scattering chamber.
The second layer is perpendicular to the beam axis and is rotated in ϕ direction by half an
element with respect to the first layer. This geometry provides an effective granularity of
48 elements which coincides with the granularity of the subsequent scintillator detector.
This allows for a track reconstruction of forward going particles.

The FWC plays crucial role in the first level trigger. It allows for a very effective se-
lection of events based on the multiplicity of charged tracks. Hits with similar position and
time information in subsequent detectors which are pointing to the target region are con-
sidered as a good candidates to be accepted by trigger, while the events not fulfilling this
condition are rejected. This method significantly suppresses the amount of background
caused by secondary interactions in the beam pipe or in the flange at the entrance to the
FD. In our experiment it was essential to incorporate the FWC in the trigger for inducing a
high threshold on deposited energies in order to separate 3He from protons and deuterons.
More detailed information concerning this detector can be found in [40].

The Forward Detector
number of scintillators 340
scattering angle coverage 2.5◦ - 18◦

scattering angle resolution ∼ 0.2◦

amount of sensitive material 50 g/cm2

- in radiation lengths ≈ 1 g/cm2

- in nuclear interaction lengths ≈ 0.6 g/cm2

maximum kinetic energy for stopping (Tstop)
π±,p,d,4 He 170 / 300 / 400 / 900 MeV
hit time resolution ≤ 3 ns
relative energy resolution

- stopped particles 1.5% - 3%
- particles with Tstop < T < 2Tstop 3% - 8%

particle identification ∆E - E, ∆E - ∆E

Table 3.3: Basic properties of the Forward Detector.

3.3.1.2 Forward Proportional Chamber

The Forward Proportional Chamber (FPC) is a straw tube tracker. It is used for accurate
reconstruction of track coordinates and for precise determination of the angles of charged
particles originating from the target region. It is composed of four modules, each with
four staggered layers of 122 proportional drift tubes. The modules are rotated by 90◦ in
the plane perpendicular to the beam with respect to each other. The straws are cylindrical
drift tubes made of 26 µm thick, aluminized Mylar foil with the anode wire located in
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the coaxial center of the tube. Depending on whether only geometrical information or
drift time is used, we can expect a spatial resolution of 8 mm and 200 µm, respectively.
In Fig. 3.5 a schematic layout is shown. A detailed description of the FPC can be found
in [41].

Figure 3.4: The Forward Win-
dow Counter.

Figure 3.5: The Forward Proportional Chamber,
3D view (left), structure of planes (right).

3.3.1.3 Forward Trigger Hodoscope

The Forward Trigger Hodoscope (FTH) shown in Fig. 3.6 consists of three layers of 5 mm
thick, BC408 plastic scintillators. The first layer is segmented into 48 straight, wedge-
shaped elements. The second and third layer are assembled from 24 elements, shaped
as an Archimedean spirals, oriented clockwise and counter-clockwise, respectively (see
Fig. 3.6). The radius of the active surface of FTH is 580 mm, with an inner hole of 48
mm diameter for the beam pipe. The unique geometry of this detector results in a pixel
structure obtained by overlap of two or three scintillation detectors. In that way the multi-
hit situations can be resolved and the noise contribution is reduced significantly. The fast
readout signals are used in the first level trigger in coincidence with the FWC and FRH to
settle the charge multiplicity conditions. The FTH detector can be also used for identifi-
cation of particles like 3He or 4He with kinetic energy below 350 MeV, which are stopped
before first layer of FRH. Due to the radiation damage and aging effects of the scintillator
material, the FTH detector have been refurbished in 2008 [42].

3.3.1.4 Forward Range Hodoscope

The Forward Range Hodoscope (FRH) is positioned downstream of the FTH. It consists
of 5 layers made of plastic scintillator BC400. The first three planes have a thickness of 11
cm, whereas the last two have a thickness of 15 cm. Each plane incorporates 24 elements,
read out individually by XP2412 photomultiplier tubes. The main purpose of the FRH
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is to measure the energies of the forward going particles. The multi-layered structure of
the FRH allows many ∆E - E combinations which are used for particle identification. In
addition, FRH supplies the information about the azimuthal angle and the multiplicity, for
the first level trigger logic. In the near future, also the usage of the energy will be possible
to have as a final trigger output, the information about the missing mass of an event.

Figure 3.6: The three layers of the Forward Trigger Hodoscope hit by two particles (left),

pixel structure obtained from the intersection of the hit modules, projected onto one plane

(right).

3.3.1.5 Forward Range Intermediate Hodoscope

The Forward Range Intermediate hodoscope (FRI) is placed between the third and fourth
layer of the FRH. It consists of two layers of 5.2 mm thick bars of plastic scintillator.
The modules are rotated by 90◦ with respect to each other, forming rectangular pixels.
Its purpose is to deliver precise time and two-dimensional position information. More
detailed information about the design and performance of this detector is presented in [43].

3.3.1.6 Forward Range Absorber

The Forward Range Absorber (FRA) is a passive iron absorber positioned directly down-
stream, after the last layer of FRH. The thickness of this absorber can be adjusted so that
protons originating from η production are just stopped in the absorber, whereas higher
energy protons produced in background reactions, e.g. multi pion production, penetrate
the FRA and induce signal in the FVH which can be used in the trigger to reject those
events.
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Figure 3.7: The Forward Range Ho-
doscope, diameters of layers are given
in mm.

Figure 3.8: Scheme of the Forward Veto
Hodoscope.

3.3.1.7 Forward Veto Hodoscope

The Forward Veto Hodoscope (FVH) shown in Fig. 3.8 is the most downstream detector
plane in the WASA setup. It consists of 12 horizontal plastic scintillator bars with a thick-
ness of 2 cm and a width of 13.7 cm, equipped with photomultipliers on both sides. The
hit position along a bar may be reconstructed from signal time information. In the first
level trigger the signals are used for rejection (or selection) of particles punching through
the FRH and FRA.

3.3.1.8 Light Pulser Monitoring System

The Light Pulser Monitoring System provides reference light pulses via light fibers to
all scintillation counters in order to monitor their gain during the experiment. Since both
organic and inorganic scintillators are used, two types of light sources were designed. A
xenon flash tube from Hamamatsu is used for the CsI elements of the calorimeter and
three LED-based light sources for all plastic scintillators. From those four sources the
light signals are transmitted to individual elements via a network of light fibers. A more
detailed description of the LPS can be found in [44].

3.3.2 Central Detector

The central detector (CD) surrounds the interaction point and is designed mainly for de-
tection and identification of photons and charged particles produced directly or originating
from light meson decays. It consists of an inner drift chamber (MDC) for precise tracking
of charged particles, a solenoid (SCS) providing magnetic field for momentum reconstruc-
tion, thin plastic scintillators in a cylindrical geometry (PSB) for particle identification and
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a CsI calorimeter (SEC) used for energy measurement of neutral and charged particles.
The main components of the Central Detector, shown in Fig. 3.3, are presented below in
more details.

3.3.2.1 Mini Drift Chamber

The innermost part of the CD is the Mini Drift Chamber (MDC). It is assembled from 17
layers consisting (see Fig. 3.9) of 1738 straw tubes. Each straw tube is made of 25 µm
thin aluminized mylar foil and a sensing wire made of 20 µm stainless steel. The straws
in nine layers are parallel to the beam axis, and in the remaining eight they are skewed
by small angle (6◦ to 9◦) with respect to the beam pipe in order to allow position sensi-
tivity in z-direction. The tubes are filled with a mixture of argon and ethane gases (80%
Ar and 20% C2H6 ). Particles passing through the tube ionize the gas mixture and as a
result electron-ion pairs are created. Under the action of the electric field the electrons
are accelerated towards the anode wire and the ions toward the cathode where they are
collected. The signal induced in the wire by electrons is very fast in comparison to the
pulse generated by ions and can be used for precise reconstruction of the trajectory of a
traversing particle. The MDC is placed within the magnetic field of the superconducting
solenoid (see Fig. 3.10), which allows us to determine the parameters of the helix de-
scribing the trajectory and reconstruct vertex position, polar and azimuthal angles at the
vertex, as well as the momentum of charged particles. More detailed information about
momentum reconstruction procedures and performance of MDC can be found in [45].

Figure 3.9: The Mini Drift Chamber
(MDC) inside the Al-Be cylinder.

Figure 3.10: The MDC surrounded by
PSB elements inside of the solenoid.

3.3.2.2 Superconducting Solenoid

The magnetic field needed for momentum reconstruction in MDC is provided by the Su-
perconducting Solenoid (SCS). The SCS is capable of producing a magnetic field up to
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1.3 T. The strength of the field inside of the drift chamber has been mapped by measuring
the axial, radial and tangential components of the field with Hall probes. The results of
measurement were compared to simulations of the magnetic flux and proper maps of mag-
netic field were established. In order to maintain the accuracy of energy measurements in
the calorimeter, the wall thickness of the solenoid and its cryostat was minimized. The
operation temperature of 4.5 K for the coil is provided by the helium refrigerator. The
magnetic field is confined by a five ton iron yoke with very low carbon content. The yoke
also protects the photomultipliers and the readout electronics from the magnetic field and
serves as a mechanical support for the crystals. More information on the SCS can be found
in [46].

3.3.2.3 Plastic Scintillator Barrel

The Plastic Barrel is an 8 mm thick layer of fast plastic scintillators, enclosing the Mini
Drift Chamber. It consists of a cylindrical central part, formed by 48 scintillator bars, and
two endcaps (48 trapezoidal elements each) allowing a close to 4π acceptance. The main
purpose of PSB is reliable separation of neutral and charged tracks especially on trigger
level, but also later in the event analysis. The deposited energy in the Plastic Barrel is
used for particle identification via ∆E−E method in conjunction with the total energy
information from the calorimeter, or via ∆E−p method using the momentum information
from the MDC.
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Figure 3.11: Left: Correlation between reconstructed polar angles of particles going to
forward and central detector, after applying cuts on deuteron band in FD and coplanarity
condition. Angles were reconstructed by means of MDC. Clear sample of pp → dπ+

events is visible. Right: The pulse height as a function of polar angle of π+ for one chosen
element of PSB.

The PSB was calibrated using pp → dπ+ events selected from data collected with a
proton beam of Ekin = 600 MeV. For event selection the following criteria were applied:
- a trigger requiring one or more hits in the Forward Range Hodoscope;
- a corresponding hit in the calorimeter (azimuthally matching the hit in PSB);
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- one charged track in the Forward Detector;
- cuts on the 2-body angular correlation shown in Fig. 3.11.

In the calibration procedure we exploit fact that for binary reaction the scattering angle
and energy are strongly correlated. It implies that π+ scattered at a certain angle has well
defined energy. Therefore, whole PSB detector can be divided into several angular bins,
and for each bin, experimentally measured light output can be compared to corresponding
energy deposit obtained from MC simulation. Typical light output as a function of scat-
tering angle is presented in right panel of Fig. 3.11. It can be noted that particles which
hit the scintillator close to the PMT produce higher light output then particles which are
emitted at small polar angle (larger distance to the PMT). This behavior can be attributed
to the light attenuation effect (see 4.2.1).

The procedure for obtaining calibration and nonuniformity constants is sketched in
Fig. 3.12.For MC simulation and data the mean energy deposit in each bin is obtained by
fitting Gaussian function to the deposited energy distribution. This information is used to
calculate the averaged ratio between real data and Monte Carlo. Subsequently, the ratio is
normalized to unity at the point (in this work 70◦) for which the linear calibration constant
was extracted. In order to derive the non-uniformity corrections the obtained dependence
(see Fig. 3.12) is fitted with an exponential function. This procedure makes use of the fact
that the simulation does not account for the light attenuation along the scintillator bars.
Having a consistent set of parameters, after the calibration is applied, the real energy can
be computed as:

Edep = QDC ·Calibcons ·NU(θ) (3.1)

where NU(θ) is the non-uniformity correction dependent on scattering angle of π+,
Calibcons is the individual calibration constant and QDC denotes the measured charge
(in QDC channels). More details about energy calibration method as well as about perfor-
mance of PSB detector can be found here [47, 48].
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Figure 3.12: Calibration coefficients and non-uniformity of two modules in central part of
PSB detector. The light attenuation is parametrized by fitting an exponential function.
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3.3.2.4 Scintillator Electromagnetic Calorimeter

The major component of the central detector is the Scintillator Electromagnetic Calorime-
ter (SEC). The design of the SEC (see Fig. 3.13 and Fig. 3.14) was optimised to provide
high-efficiency photon detection with good energy and spacial resolution over an energy
range of 5 MeV to 1000 MeV. The SEC detector is assembled from 1012 sodium-doped
CsI(Na) scintillating crystals arranged in a vertex-pointing geometry forming the shape
of a bubble. All crystals are placed in a 24 circular layers along the beam pipe, covering
scattering angles from 20◦ to 169◦ what accounts for 96% of the full solid angle. The
spherical geometry of the calorimeter was achieved by the usage of trapezoidally shaped
crystals with lengths from 20 to 30 cm. The elements are read out individually by photo-
multiplier tubes. The connection between PMTs which are attached to the outer side of the
iron yoke and crystals was obtain via plastic light guides, 120 - 180 mm long. The analog
signals from SEC are used in the data acquisition system to enhance the selectivity of the
trigger by providing the information (with use of the PSB detector) on the multiplicity
of charged and neutral tracks. The calorimeter energy resolution for photons is given by
∆E
E = 5%√

E/GeV
while the angular resolution is limited by the size of a crystal. More details

about the geometry, design and performance of the SE are given in [49].

Figure 3.13: Schematic view of
the Scintillator Electromagnetic
Calorimeter. The Mini Drift Cham-
ber tubes and both forward and
backward Plastic Scintillator Barrel
end caps are indicated.

Figure 3.14: Coverage of the polar angle in
calorimeter. The shape and size of the CsI
crystals for 24 layers are shown, from back-
ward (left) to forward (right) part of the SE.
The numbers correspond to the number of
crystals in each ring.
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3.4 Data Acquisition System

All components of the WASA detector are served by the upgraded data acquisition sys-
tem (DAQ) designed to cope with the high luminosities. The currently used DAQ system
evolved from the second generation of DAQ systems [50] used in experiments at COSY
and it was optimized to reach the highest possible event rates. The major development was
focused on implementation of new synchronization system and digitization modules. The
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Figure 3.15: Structure of the new DAQ system of WASA detector. The figure is adapted

from [50].

new DAQ system of the WASA experiment is hierarchically structured into layers, as illus-
trated by Fig. 3.15. Signals from the front-end electronics (preamplifier, splitters, discrim-
inators) are connected to the digitizing modules in the 14 crates. Each crate is equipped
with an optimized LVDS1 system bus and so-called system controller (SC) which is re-
sponsible for the readout of the digitizing modules and the transfer of data to the readout
computer farm. The evaluation of the digitized signals is done by FPGAs. The digitized
information is stored in the internal buffers until the valid trigger arrives. This allows trig-
ger delays up to 2 µs and avoids delaying the data signals. When the trigger appears an
FPGA selects the digitized signals inside a predefined time interval.

All crates are connected to the readout computer farm via optical links. An event
builder collects the data streams from the individual readout systems and writes them in
the cluster format to a disc array. Each cluster can contain data from more than one event,
thus the decoding of the cluster format into events is necessary. The conversion can be
done by the EMS software [51].

1Low Voltage Differential Signaling
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3.4.1 Read-Out Electronics

The main purpose of the read-out electronics is to convert the analog signals of the detec-
tor components into digital information. In case of the WASA facility all analog signals
from the plastic scintillator detectors are transmitted via coaxial cables, to the active or
passive splitters. There, the signals are distributed into two branches. One branch feeds
the signals to the continuous-sampling front-end FastQDCs modules equipped with 12-bit
ADC converters running at 160 Msamples/s while the other branch delivers the signals to
the leading edge discriminators. The logic signals from discriminators are passed to the
long-range TDCs for hit time measurement. The 64 channel module based on the GPX
ASIC is multi hit capable, this means time information for several hits within certain time
window relative to the trigger can be stored. Additionally, all logic signals are also passed
to the trigger logic described in next section.

Due to the different shape of the pulses derived from the calorimeter, special kind of
SlowQDCs modules with a sampling rate of 80 MHz have been developed. In both types
of QDCs the charge integration is done in FPGA. In addition, double pulse detection,
baseline information, pedestal subtraction and time stamping by zero crossing detection is
performed. To extract time information from calorimeter an algorithm for time-stamping
provided by FPGA is used. In case of faster signals from the plastic scintillators in for-
ward detector the TDCs channels are required, which are connected to the corresponding
discriminator outputs.

For the measurement of the drift time of the straw tubes in the WASA detector system,
a 64 channel TDC module based on the F1 ASIC was used, which already had been
developed for the ANKE [52] experiment. Before the signals reach the LVDS inputs of
the TDCs, they are amplified and discriminated by CMP-16 chips.

3.4.2 Trigger

One of the most crucial challenges of the experiment is the proper set-up of the trigger
which allows to retrieve the information related to the events of interest. It is obvious that
data acquisition is not fast enough to record all events which are registered in the detectors
therefore, some kind of event selection must take place.

The WASA trigger system is based on a set of multiplicity, coincidence and track
alignment conditions which have to be fulfilled in order to accept the event. In the Fig. 3.16
a flow chart of the trigger system is shown.

During data taking for this experiment there were two trigger levels, both imple-
mented in hardware. The first trigger level is intended for triggering the hardware ac-
quisition, and for generating gate and control signals for the front end electronics. The
signals of the plastic scintillator detectors are passed to the multiplicity units where the
clustering of neighboring hits takes place (up to four clusters in each detector plane can
be detected). In the next step geometrical overlap between clusters in FWC, FTH, and
FRH is performed and a set of primary triggers is produced. The simple multiplicity sig-
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Figure 3.16: Structure of the new trigger system of WASA detector.

nals are combined in coincidence matrices to form more complex trigger expressions after
individual delay matching in programmable delay units.

The purpose of the second level trigger is to increase selectivity of the accepted events
by using additional information about cluster multiplicity and total energy sum [53] in
the calorimeter. A cluster in the SEC is defined as a group of hits in adjacent elements,
while a multiplicity of clusters can be associated with the number of possible meson
decay products. Additionally, to distinguish charged clusters among neutral, the geometric
overlap of the crystals and coincident hits in PSB is checked. In SEC the analog sums are
obtained from groups of signals corresponding to 16 crystals in the central part of the
calorimeter, 12 crystals in the forward and 9 in backward part. The summed signals are
evaluated by a dual threshold discriminator giving logic signals for low and high energy
deposits.

The balance of the event rates is achieved by prescaling all high rate triggers. The trig-
gers are connected to a trigger selector unit with 48 trigger inputs. It has 4 programmable
48 bit masks, connected to one OR output each. The masks allow to set in parallel, up
to 32 different coincidence conditions which can activate the readout. The logic output
signals of all trigger channels are passed to an additional FastTDC and this information
is used later in the offline analysis to determine which trigger was responsible for starting
the data acquisition.



4 Event Reconstruction

4.1 Analysis Framework

The software used for the analysis is split into three main packages which allow for
event reconstruction, Monte Carlo detector simulation and event generation. In follow-
ing section, the role of individual programs in the process of data analysis will be briefly
discussed. For better understanding, the flow chart showing the consecutive steps in the
analysis chain is presented in Fig. 4.1.

Figure 4.1: Flow chart of the analysis chain.
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4.1.1 Event Generator

In this thesis for an event generation the Pluto++ package [54] was used. It is aimed at the
study of hadronic interactions from pion production threshold to intermediate energies of a
few GeV per nucleon. Originally it was designed mainly for the HADES [55] experiment,
but with the time software evolved and now other collaborations like WASA or CBM2
[56] are using Pluto++ to perform simulations. The package consists of a collection of
C++ classes and is entirely based on the ROOT [57] environment. After the user specifies
the reaction channel, Pluto generates kinematically allowed sets of momentum 4-vectors
for all final state particles. The calculation of homogeneous and isotropic phase space is
based on the GENBOD [58] procedures. If there is no any specific reaction dynamics
defined, kinematical weight per generated event is constant. When any distribution in the
phase space is expected to follow a certain reaction model, the aforementioned weight
is multiplied by a factor according to the model parametrization. This weight has to be
considered during the analysis. Pluto++ offers several elementary reactions where the
angular distribution models based on the parametrization of existing data are included,
however for more complicated channels the event generator should be adapted to the
corresponding physics by the user.

In case of dd → 3Henπ0, the reaction is composed of two possible reaction mecha-
nisms: the direct production with the three-body phase space and the production in pd
subsystem with a spectator neutron stemming from the deuteron beam or the deuteron
target. The quasi-free reactions mean that only one of the nucleons in the deuteron is par-
ticipating in the interaction while the other does not take part in the momentum transfer
(see Fig. 4.2). This is to some extent the consequence of the small binding energy of the
deuteron.

d

d

specn

He3

0π

p

Figure 4.2: Quasi-free model for a particle production reaction via dd → nsp
3Heπ0.



4.1 Analysis Framework 25

4.1.2 Quasi-Free Process

In this work for parametrization of the quasi-free reaction, the empirical angular distri-
bution and energy dependent cross section from [59] were included. Authors of the cited
publication measured reaction ~dp → 3Heπ0 at twenty beam energy settings from 397.35
MeV up to 429.75 MeV. For each energy the differential cross section was fitted with the
following function:

dσ
dΩ

=
ηmπ

3pp

(
A2

0 +2B2
0 +2ηA0|A1|cosϕcosθ+ |A1|2η2cos2θ

)
(4.1)

where A0, |A1|,ϕ,B0 are parameters for which the fit function best matches all data. The
θ is the angle of 3He in d-p c.m. system (see Fig. 4.3), η and pp can be calculated as:

η =
pπ

mπ
(4.2)

pp =
√

(s− (mp +md)(mp +md))(s− (mp −md)(mp −md))/4s (4.3)

where pπ denotes the pion momentum in global c.m. system and s stands for the square
of total energy. To understand how these informations were incorporated in the generator,
the crucial parts of implementation of the quasi-free process for the case of neutron being
a spectator from target will be explained. In the first step the considered reaction is sub-
divided into a spectator and the quasi-free sub-reaction:

Pb
d +Pt

d → Psp + Px (4.4)

Figure 4.3: Simplified sketch of the deuteron-deuteron collision in the quasi-free model
visualized in the laboratory system (left). Quasi-free process represented in the deuteron-
proton center of mass system. The θ angle shown in the picture corresponds to the 3He
emission angle in reaction~dp → 3Heπ0 (right).

with P marked with subscripts being the four-momentum of the beam, target, spectator
and sub-reaction, respectively. In order to assure reasonable speed of computations and
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to get directly from the generator absolutely normalized cross-section, the map of the
probabilities for pairs [~pfermi, cosθ] in the form of two dimensional histogram was pre-
pared (see Fig. 4.4 ). On the z-axis, expression σ(η) denotes the total cross section as a
function of η while term p(~pfermi) is used to populate the momenta of nucleon inside the
deuteron according to Fermi distribution. For the latter, an analytical parametrization of
the deuteron wave function [60] based on the Paris potential (see Fig. 4.4) was exploited.
For parametrization of the total cross section data presented in Ref. [59] and Ref. [61]
were used. Integration over~pfermi and cosθ of the distribution presented in Fig. 4.4, results
in the total cross section σtot = 580nb for dd → 3Henπ0 reaction at beam momentum
1.2 GeV/c with the neutron being the spectator from the target. This information makes
possible to perform absolute normalisation of any spectrum produced from the generator.
The benefit is that one can compare normalized data directly with the generator output
and judge about the contribution of the quasi-free process. To calculate σ(η) in the gener-
ator we need to compute invariant mass sx of the system 3He+π0. Knowing the spectator
four-momentum vector Psp and making use of the energy and momentum conservation
we can write:

Px = Pb
d +Pt

d −Psp (4.5)

sx = |Px|2 (4.6)
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Figure 4.4: Fermi distribution of nucleon momentum inside the deuteron (left). Map of the
probabilities for pairs (pfermi,cosθ). Function p(pfermi) is used to populate the momenta of
nucleon inside the deuteron according to Fermi distribution. The σ(η) term expresses the
total cross section as a function of η (right).

Considering the Eq. 4.2 one sees that η is a function of the pion momentum which
can be calculated as:

pπ =
√

((sx −m2
3He −4m2

π0)2 −m2
3He ·m

2
π0)/4sx (4.7)

The following description refers to the situation where we have neutron as a spectator
from target. If one wants to focus on case where spectator is stemming from the beam, then
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Figure 4.5: Differential cross section (black lines) obtained from Pluto for few selected
beam energies. On each spectrum function 4.1 fitted to the data of Ref. [59] is superim-
posed (blue lines).

additionally, Lorentz boost of the Psp to the beam system should be performed. In the main
event loop the direction and Fermi momentum of the participant nucleon is determined
according to the distribution presented in Fig. 4.4. In the deuteron rest frame, participant
moves in opposite direction to the spectator having the same momentum. Finally, the sub-
reaction X→ 3Heπ0 is processed. As this is a 2-body reaction, the momenta of 3He and π0

in global c.m system are determined only by the mass of subsystem X. In order to sample
events with a specified angular distribution the rejection method [62] has been applied. To
make use of it, the function from Eq. 4.1 was normalised at cosθ = 1 to one and random
number N ∈ (0,1) was generated. In the subsequent step the loop where the X → 3Heπ0

is placed is repeated till the random value N is larger than the normalised cross. Events
which satisfied following criterion have expected angular distribution. After the event loop
is finished the four momentum vectors of all particles are transformed to the laboratory
frame by means of Lorentz transformation and saved for further processing.

To check the quality of angular parametrization in the generator we tried to reproduce
cross section presented in [59]. The function 4.1 perfectly describes the data what means
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that if one had implemented it in the generator than obtained angular distribution should
reproduce the data points in the exact way. Before the comparison, all spectra from the
generator has been normalised accordingly. The agreement between function 4.1 describ-
ing the data of Ref. [59] and output from the generator is shown in Fig. 4.5. As can be seen
there is no discrepancy what implies that parametrization was successfully incorporated.

4.1.3 Event Generator Based On Partial Wave Decomposition

In order to describe the data, apart from the quasi-free model the partial wave expansion
for dd → 3Henπ0 reaction has been developed (see Section 5.4). As a result the pro-
duction amplitude was decomposed according to the angular momenta of the final state
particles. This information was used to implement appropriate matrix element in 3-body
generator. Taking the angular momenta~L23 of particle 2 in subsystem 2-3 and~L1 of par-
ticle 1 in global CM we can list the seven partial wave contributions which have been
incorporated in the generator. According to the formula for four-fold differential cross
section (see Eq. 5.17 in Section 5.4.2) the following matrix elements presented in Tab. 4.1
were implemented in 3-body generator. The implementation of 3-body generator based

H0 = |T |2 ∝ constant sS wave (~L1 = 0,~L23 = 0 )
H1 = |T |2 ∝ |~p|2cos2θp sP wave (~L1 = 0,~L23 = 1 )
H2 = |T |2 ∝ |~p|2sin2θp sP wave (~L1 = 0,~L23 = 1 )
H3 = |T |2 ∝ |~q|2cos2θq pS wave (~L1 = 1,~L23 = 0 )
H4 = |T |2 ∝ |~q|2sin2θq pS wave (~L1 = 1,~L23 = 0 )
H5 = |T |2 ∝ |~q||~p|cosθqcosθp interference sP and pS
H6 = |T |2 ∝ |~q||~p|sinθqsinθpcosϕ interference sP and pS

Table 4.1: The matrix element parametrisation based on partial wave formalism applied

for dd → 3Henπ0 reaction.

on partial wave decomposition has been done as a two-step process. First the reaction
d+d → 1+X23 is sampled and one dimensional histogram containing probability distri-
bution for invariant mass of two-particle intermediate system is created. In the second step
the reaction X23 → 2+3 is processed. Let’s denote the mass of subsystem X23 by M23, one
can write that M23 may vary between the limits M2 +M3 ≤ M23 ≤ s−M1, where s corre-
sponds to the square of the total energy. In order to construct the probability distribution
of M23 the loop over all possible masses is processed and each entry in the histogram is
weighted according to p2L23+1q2L1+1, momenta p and q are calculated using Eq. 5.1. The
kinematics of the reaction d+d → 1+X23 can be written in terms of four-momentum
vectors as:

Pb
d +Pt

d → P1 + P23 (4.8)
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In the generator this decay is implemented in the global CM system, thus from the mo-
mentum conservation we can write:

~p∗1 = −~p∗23 (4.9)

Based on that, we can express four-momentum vectors in the global CM system as:

P∗
1 = (

√
(M2

1 + |~p∗1|2),~p
∗
1) (4.10)

P∗
23 = (

√
(M2

23 + |~p∗1|2),~p
∗
1) (4.11)

where M23 is sampled from the histogram which contains the probability distribution of
having correctly distributed masses in subsystem X23. The momentum |~p∗1| in the global
CM system may be calculated in following way:

s = |Pb
d +Pt

d|2 (4.12)

E∗
1 = (s−M2

23 +M2
1)/2

√
s (4.13)

|~p∗1| =
√

E∗2

1 +M2
1 (4.14)

In parallel, the angular distribution for particle denoted as “1“ is sampled. The azimuthal ϕ
angle is evenly distributed in the interval [0, 2π], while scattering angle θ follows the sin2θ
or cos2θ function if we are interested in p-wave. In case of s-wave, cosθ is sampled from
isotropic distribution. The similar operations are conducted for X23 → 2+3 process. First
the momentum of particle indicated as “2“ is calculated in the rest frame of subsystem
X23 and the angles ϕ and θ are sampled isotropically. Since we are in CM system, we
have complete information to construct four-vector of particle marked as “3“. What’s left
to be done is to sample angular distribution for particles in subsystem X23 according to
expected partial wave contributions. This has been achieved by employing the rejection
sampling [62] method. After the event loop is finished the four momentum vectors of all
particles are transformed to the laboratory frame by means of Lorentz transformation and
saved in ROOT Trees [57] format.

4.1.4 WASA Monte Carlo

The WMC detector simulation is based on the GEANT3 [63] software package, which
was originally designed for the high energy physics experiments. The GEANT program
simulates the passage of elementary particles through the matter using Monte Carlo tech-
niques. Before starting simulation user has to provide set of parameter files which contains
description of the detector geometry used in the experiment. Here the definition of shapes
and materials of all active detector elements, e.g. scintillators, as well as all passive ones
like scattering chamber or beam pipe should be included.

The WMC reads the information about the particle four-vectors from the output of the
external event generator. Those particles are then tracked through the detector and their
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interaction with the active and passive detector material is simulated by taking into ac-
count the energy losses, multiple scattering, decays and other processes with known cross
sections. The scintillator response and hence the light output depends on efficiency for
converting ionization energy to photons. This effect is called quenching and it is a com-
plex function of mass, charge and energy of the incident particle. The WMC compensates
this effect by modifying the energy losses using semi-empirical Birks’s formula [64]. The
processes like light attenuation in the scintillators, response of photo multiplier tubes or
electronic noises are not implemented in the WASA Monte Carlo. The match between
simulations and the response of the detector can be obtained via smearing of the simu-
lated observables. The parameters used for smearing are defined in proper filters which
are applied in the analysis program.

The output from the WMC is saved in a format which is comparable to the one used
for experimental data and therefore can be analyzed by the same reconstruction program.
The original four-vectors of the generated particles are also written to the WMC output
together with vertex position. Those informations allow for study the reconstruction effi-
ciency, resolution and detector acceptance.

4.1.5 RootSorter

The analysis of simulated data as well as experimental data files was performed within
the event reconstruction software framework called RootSorter [65]. This is an analysis
tool, based on the ROOT platform, entirely written in C++ using object oriented program-
ming techniques. The modular structure of the software guarantees flexible analysis code
management. The essential concept of RootSorter is to hold the experimental raw data as
well as calibrated ones and also analysis results like clusters or tracks in class objects with
common interface. The specific filters reads and interprets data from external sources (e.g.
EMS event stream), decode these data and put proper information in the correct data ob-
ject. In the first step of event reconstruction the assignment of data from converter modules
to the according subdetectors is performed, the time and energy information is combined
into hit objects and saved to the so-called RawHitBanks. In case of simulations the Monte
Carlo data are stored in a MCHitBanks. At this stage treatment of experimental data and
the simulated data varies. Data from the experiment have to be calibrated, TDC informa-
tion is converted to time and QDC signals into deposited energy. Hits with informations
outside the predefined allowed regions are discarded. The necessary parameters for the
calibration are stored in a central MySQL database. They have unique tag which specifies
for what period of data taking they are valid. The obtained calibration on hit level is not
final since some calibration procedures depend on higher level reconstruction, however
it can be used to proceed with cluster and track finding algorithms. To match the Monte
Carlo simulation with the real data, set of smearing factors is applied and tuned until the
experimental resolution is reproduced. After this procedure simulated and experimental
data are handled identically during further steps of the analysis.
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The RootSorter framework offers a user set of low level utilities which are designed
for online monitoring of the data during experiment. The implemented client-server mech-
anism allows to connect running analysis from any host and guarantees the access to all
histograms.

4.2 Detector Calibration

4.2.1 Plastic Scintillators In Forward Detector

Before we focus on the calibration method let us survey some of basic effects which occur
when the scintillator material is struck by charged particle. One of the most important
phenomena which can be observed during passage of the particles through the scintillation
detector is their energy loss as result of atomic collisions. The consequence of the latter
is the ionization or excitation of the atoms in the material. When the atoms deexcite,
photons are emitted. The light is transmitted to the photomultiplier where it is converted
into a weak current of photoelectrons which is then further amplified by an electron-
multiplier system. Under the action of electric field, electrons are accelerated towards the
anode from which the electric signal can be taken. The height of the pulse is proportional
to the number of photons impinging on the photocathode. When we assume that the light
collection efficiency of the scintillator is one hundred percent and the photomultiplier is a
linear device then the amplitude of the pulse is proportional to the energy deposited in the
scintillator by the incoming particle. This makes the scintillators a suitable instruments for
measurement of particle energy. However, in the reality, this linear relation does not hold
and one has to take into account several effects which cause deviations. First of all the the
light collection depends on the geometry of the detector and on the absorption caused by
the scintillator material. The latter begin to play severe role when the dimensions of the
counter are such that the total path length traversed by the photons is comparable to the
attenuation length1. In general also the light yield for given energy depends on different
types of particles. Moreover, for given particle type it does not always vary linearly with
the energy. This effect is known as a quenching and can be associated with interactions
between excited molecules created along the way of incident particle. As the result a
fraction of the energy which would transform into luminescence is diminished. According
to [64] the amount of fluorescent light emitted per unit path length dL

dx as a function of
deposited energy dE

dx is given by the formula:

dL
dx

=
A dE

dx

1+kB dE
dx

(4.15)

where A is a scintillation efficiency and kB is a constant that depends on the particle type
and the material. Another important effect which should be considered is the non linear
response of the photomultiplier. It occurs mainly for huge pulses due to space charge

1The attenuation length is defined as length after which the light intensity is reduced by factor e−1.
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effects or the high voltage fluctuations between the dynodes. Finally, one has to check if
there are no any time dependent effects. This can be done by selecting particles which
have well defined energy deposit in the detector and checking if there was a drift of the
energy deposit peak within a long time scale. If any of these effects is recognized in the
data then it has to be parametrised and corrected on the calibration level.

In this experiment in order to do the particle identification via ∆E - ∆E technique, the
energy calibration of the plastic scintillator detectors in both layers of FWC and first layer
of FTH has been performed. The calibration procedure starts with the parametrization of
the light output of protons stemming form the quasi-free elastic scattering dd → ppnn
reaction as a function of the scattering angle. Due to the kinematics those protons have
fairly constant specific energy loss independent from the scattering angle. It implies that
any deviations from a constant light output can be associated to a non uniform light col-
lection efficiency. The light output of the one module in FWC detector as a function of
scattering angle is shown in Fig. 4.6. Here, in order to get rid of the dependence on the

Figure 4.6: The light output for protons originating from quasi-free elastic scattering as
a function of the scattering angle in one module of the FWC detector (left). In the right
panel the same dependence is plotted but additionaly the polynomial (red curve) of second
order which was used for parametrisation of the nonuniformity is presented.

path length traveled by protons the ADC content is multiplied by cosθ. In case of FWC
detector the light output distribution was parametrized with a polynomial of second order
as it is shown in the right panel of Fig. 4.6. What one sees there, slightly contradicts a
naive intuition that the light collection efficiency will raise while increasing polar angle.
This manner of thinking assumes that if the particle hits the module at a small polar angle,
the emitted photons are less likely to reach the PMT then in case where element is struck
at a large angle close to the photocathode. It is true in case of scintillators which have a
shape of rectangular bars. Since the FWC modules are pizza-like this makes geometrical
focusing effects, hence the light collection is slightly higher near the tip of the element
which corresponds to the small polar angles. To correct for the non-uniformity of the light
output in the first layer of the FTH detector similar procedure has been applied. The only
difference was that for the parametrization, higher orders of polynomial have been used.
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The fact that we have in total 96 modules to be calibrated, yields in huge amount of
calibration constants. Thus, to minimize the number of constants, the relative calibration
has been performed. As a result instead of doing calibration for each individual module we
could treat whole detector as an one element. The method of relative calibration makes
use of characteristic geometry of FWC and FTH detectors. Let us explain how it was
done in case of FWC detector. We know that both layers in FWC are shifted by half an
element with respect to each other what means that one module in FWC1 overlaps with
two modules in FWC2. This feature is exploited to do alignment of the non-uniformity
corrected light output within chosen layer. It is easy to understand that looking on Fig. 4.7,
here the light output for element five in FWC2 is used to equalize the light yields of
elements four and five in FWC1. Using these histograms we select few intervals (see
grey bars in Fig. 4.7) on X-axis and project them onto Y-axis. The results of projections
are fitted with gauss function and the peak position is determined. Based on that we can
construct correlation between light outputs of two adjacent elements in the same layer as

 / ch FWC2 (el-5)ADC’

2000 3000 4000 5000 6000 7000 8000

 /
 c

h
 

F
W

C
1

 (
e

l-
4

)
A

D
C

’

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 12• • • •

0πHe n 3 →d d

He n3 →d d

 d X→d d

 / ch FWC2 (el-5)ADC’

2000 3000 4000 5000 6000 7000 8000 9000

 /
 c

h
 

F
W

C
1

 (
e

l-
5

)
A

D
C

’

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 12• • • •

0πHe n 3 →d d

He n3 →d d

 d X→d d

Figure 4.7: The correlation between the light outputs for 3He (middle and up-
per band) and for deuterons stemming from break-up reactions (lower band). The
ADC

′
= ADC · cosθ/f(θ), where f(θ) describes the corrections for non-uniformity. The

grey bars denote the ranges on X-axis for which the projection onto Y-axis is performed.

it is shown in Fig. 4.8. By fitting polynomial of second order we are able to find correction
factors which are used for alignment. With this method we can proceed iteratively for the
rest of the modules in the FWC1 detector. The outcome of the procedure is illustrated in
the right panel of Fig. 4.8. To perform relative calibration for FWC2 and FTH1 detectors
an analogous technique has been applied.

The conversion of the signal amplitude to the energy deposit ∆E in a given detector
was achieved by comparing the measured data to the Monte Carlo simulations. Based
on assumption that the relative normalisation equalized possible non-linearities of differ-
ent modules, we used for the comparison whole layers instead of doing the calibration
element-wise. In order to ensure well defined energy loss special data sample containing
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Figure 4.8: The polynomial of the second order used to equalize the light outputs of
two neighboring elements in FWC1 detector (left). Relatively aligned light output in the
FWC1 detector (right).

3He from reaction dd → 3Henπ0 and dd → 3Hen was preselected. The light output of one
layer (e.g FWC2) after correction for non-uniformity is plotted versus the light output
of the first layer in FTH detector. This plot is then compared to the same correlations
obtained from simulation. In left panel of Fig. 4.9 several distinctive points for which
comparison was performed are marked by red circles. The calibration function which was
used to align the Monte Carlo and the data is following:

dE =
a ·ADC′

(1− (b/a) ·ADC′)
(4.16)

where parameters a and b can be expressed as:

a =
Y0

c ·X0
(4.17)

b =
Y0

c ·X2
0
· (1−1/c) (4.18)

The Y0 and X0 correspond to mean value of deposited energy of 3He from Monte Carlo
and the real data, respectively. The parameter c describes the deviation from linearity. This
form of calibration function has the advantage over a polynomial, because the number of
parameters is reduced, moreover, one knows which calibration constant should be modi-
fied in order to get a defined change in calibration. To control interactively the alignment
of ∆E - ∆E bands special ROOT macro has been written. This tool makes possible to tune
calibration constants c, Y0 and X0 by making slices from ∆E - ∆E plots and superimposing
the Monte Carlo distributions on the experimental ones till they match. Since the non-
uniformity parametrization has been carried out for six angular bins in the range from θ =
2.5◦ to θ = 18◦ also the constants for absolute energy calibration were extracted separately
for each angular bin. To avoid discontinuity of calibrated energy between neighboring
bins, the linear interpolation was applied. The right panel of Fig. 4.9 shows ∆E - ∆E band
after applying absolute energy calibration.
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Figure 4.9: The non-uniformity corrected light outputs of 3He in the second layer of FWC
versus the first layer of FTH detector. Three distinctive points which were used for ab-
solute calibration have been marked by the red circles (left). Non-uniformity and non-
linearity corrected ∆E - ∆E plot. The presented energy loss band corresponds to the 3He
originating from dd → 3Henπ0 (right).

4.2.2 Kinetic Energy Reconstruction in Forward Detector

In case of particles which are stopped in the detector, whole deposited energy is equal
to the true kinetic energy. In reality, this behaviour does not hold due to the energy loss
in the passive material of the detector and the inefficiencies in the scintillation process.
To compensate for all these effects, the kinetic energy is reconstructed with the use of
special lookup tables containing parameterized functions which allow recalculate Ekin
from energy deposited in the detector. During preparation of individual tables one has
to take into account the type of the particle, the detector plane where the particle was
stopped, the scattering angle, and the number of layers used for energy reconstruction.
All this informations have been derived from Monte Carlo simulations. In the first step
single tracks for 3He with kinetic energies varying between 0 GeV and 0.5 GeV were
simulated. An analytical parametrization of energy loss as a function of kinetic energy
has been obtained by fitting histograms showed in Fig. 4.10. Here, the correlation between
deposited energy in specific detector layers versus the kinetic energy are presented. Since
the energy loss depends on the scattering angles, the parametrization have been prepared
separately for six angular bins. To keep the smoothness of reconstructed energy between
neighboring bins, the linear interpolation was applied. The 3He particles stemming from
dd → 3Henπ0 have kinetic energy in the range 125 MeV - 245 MeV therefore they are
punching through the FWC and then are stopped mostly in the second and third layer
of the FTH detector. This excludes the possibility of use the Forward Range Hodoscope
which usually serves for energy reconstruction in most experiments carried out with the
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Figure 4.10: The parametrization of deposited energy as a function of initial kinetic energy
performed for selected angular bin. The fitted functions are shown in blue. Different cuts
on energy loss allow to distinguish between cases where 3He particles are either stopped
or they are punching through.

WASA detector. The studies of performance of FTH2 detector described here [66] have
shown that signals from most modules in the second and third layer were strongly position
dependent, moreover, for some of the elements it was not possible to separate signals
from the background though the voltage applied to the photomultiplier was at maximum.
When one adds to this the complicated shape of modules (Archemedian spirals) than
finally it turned out that is not possible to calibrate these two layers in plausible way. This
limits the number of detectors which could be used for kinetic energy reconstruction to
the FWC1, FWC2 and first layer of FTH1. For the latter, one has to separate the case
where 3He are stopped and when they are punching through. These situations can be
disentangle by checking if helium reached or not the second layer of FTH. The blue lines
in Fig. 4.10 show the fitted parametrizations, for the FWC polynomial of fourth order was
used while for FTH power functions and polynomials of lower order have been applied.
The values of the fit parameters together with the formulas which were used for fitting can
be found in Appendix B. Having accomplished parametrization we defined χ2 function in
the following manner:

χ2 =
n

∑
k=1

(∆Em
k −∆Et

k(Ekin))
2

σ2
k

(4.19)

where n is the total number of layers traversed by the particle and σk denotes uncertainty
of the energy deposit in layer k. The numerator in equation 4.19 is calculable as difference
between measured energy deposit ∆Em

k and expected energy loss ∆Et
k(Ekin) determined by

an analytical parametrization. To find the kinetic energy in each event the minimization
of χ2 is performed. This is realized by a simple algorithm which executes quickly and
returns those values of the parameter Ekin which give the lowest value of χ2. The kinetic
energy of 3He is assumed to be properly reconstructed if the calculated χ2 value is smaller
then χ2

max = 5. If the χ2
max is exceeded, then one can presume that 3He was misidentified

2During this experiment the old FTH detector was used. Due to the radiation damage and aging effects of
the scintillator material, it was replaced by the new one in 2008.
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Figure 4.11: The difference between the reconstructed kinetic energy and the one obtained
from the event generator. By fitting this distribution with gauss function the inaccuracy of
the energy determination can be estimated (left). The evaluated from MC inaccuracy of
the reconstructed energy versus 3He kinetic energy (right).

and such an event is discarded. The evaluation of reconstruction error was obtained by
comparing reconstructed kinetic energy from Monte Carlo data with the ”true” one, i.e.
the kinetic energy given by the event generator (see Fig. 4.11).

4.2.3 Calibration of Scintillator Electromagnetic Calorimeter

In order to determine the energies of photons originating from neutral pion decay, the
calibration of Scintillator Electromagnetic Calorimeter has to be performed. Prior to the
installation of SEC at the COSY ring all crystals in the the calorimeter were tested and a
pre-calibrated using radiative sources and cosmic muons [67]. This calibration is sufficient
for online monitoring, although it can not be used for photons since the mechanism of
energy deposition is different. Thus the further calibration was carried out with the use of
photons from neutral pion decay. For that purpose events with exactly two neutral tracks
in the Central Detector are selected. Two neutral tracks correspond to two neutral clusters
(see Section 4.3.2) produced by photons which traverse the crystals in the calorimeter.
The Lorentz invariant mass for each pair of photons can be calculated as:

Mγ1,γ2 =
√

2Eγ1Eγ2(1− cosθ1,2) (4.20)

where Eγ1 and Eγ2 are the measured energies of the photons based on the preliminary
calibration and θ1,2 is the opening angle between the photons momenta. For each π0 can-
didate, the invariant mass is assigned to the crystals with the largest energy deposit in the
cluster. If the invariant mass distribution of two photons is shifted with respect to the π0

mass then for each crystal of the calorimeter the calibration correction factor is applied
according to:

E
′
γ1,γ2

=
mπ0

Mγ1,γ2

Eγ1,γ2 (4.21)
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Figure 4.12: Two photon invariant mass distribution versus the detector number in the
calorimeter (left). The mass of neutral pion is marked with red dashed line. In the right
panel the invariant mass is shown. The peak corresponding to the π0 mass is clearly seen.

where E
′
γ1,γ2

is the uncorrected energy of γ1 and γ2, Eγ1,γ2 is the energy after applying
corrections, mπ0 is mass of neutral pion and Mγ1,γ2 is the invariant mass of two photons.
This procedure is repeated until the invariant mass distributions of all modules in the SEC
is centered at the exact mass of neutral pion. In the left panel of Fig. 4.12 the invariant
mass distribution versus the module number in calorimeter is presented. The right panel of
Fig. 4.12 shows the invariant mass of two photons stemming from dd → 3Henπ0 reaction.

4.3 Track Reconstruction

In case of the WASA detector we can distinguish two major parts where particles can be
detected, namely the forward and the central part. Depending on which part of the WASA
detector a particle traversed, two different algorithms for the tracks reconstruction are
available in RootSorter framework. In general, both of these reconstruction procedures
attempt to reproduce the particle trajectories with properly assigned four-momentum vec-
tors. First, the algorithm has to determine which hits originate from the same particle.
Those hits are merged into clusters which are the base components of tracks. In the fol-
lowing sections the description of the algorithms used for the reconstruction of 3He and
π0 tracks will be given.

4.3.1 Track Reconstruction in the Forward Detector

As already mentioned in the previous section most helium originating from dd → 3Henπ0

reaction are stopped in the second layer of the FTH detector. This implies that in the track
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reconstruction routine following detectors can be involved: two layers of FWC, straight
layer of FTH and Forward Proportional Chamber. To minimize the frequency of occur-
rence of random hits the reconstruction algorithm works on pre-calibrated HitBanks. First,
all hits from both layers of FWC detector are put into two temporary arrays. The index of
an element in such an array corresponds to the number of hit module in the detector. This
unique pattern allows to select only hits which come from overlapping elements. If there
is more then one such a combination additional constraints are applied e.g. the smallest
time difference between hits or the energy deposit thresholds. The overlap between ele-
ments in FWC defines the information about the azimuthal angle for the track candidate.
Based on that, the track is extrapolated to the next detector which is the FPC. Here, hit
straws from four independent modules are combined into clusters. To form the cluster the
geometrical overlap between the hit sensing wires is checked. If we assumed an ideal case
when a cluster would contain only hits stemming from the impact of one particle then due
to the orientation of straws (see section 3.3.1.2) we can expect in total four overlapping
clusters in the FPC detector. In reality, this number can be increased due to electronic
noise or artifacts in the reconstruction. The exclusion of additional clusters is realized
by comparing the azimuthal overlap. Algorithm starts with cluster in first plane and tries
to match it with another one from an adjacent layer. If succeeded then the search of third
best matching cluster from any unused layer is performed. After all possible combinations
have been checked, overlapping clusters are merged into so-called detector track. To de-
termine the coordinates of clusters the position of the sensing wires is used. The crossing
point of all wires defines the coordinates of the track, assuming its origin in the origin of
the WASA coordinate system. In Fig. 4.13 the residuals and efficiency for modules used
in track finding procedure are presented. The residuals are defined as a difference between
measured and calculated position of cluster in given module. Let us denote four possible
clusters which can form track in FPC by X, Y, U, V (each cluster represents one module).
If, for instance we want to estimate residual for cluster X then we have to check what was
the measured position and compare it to the expected position calculated from clusters
Y, U, V. In an analogous manner we can determine the residuals for remaining modules.
The residuals centered at zero mean that geometry of FPC used in the track reconstruc-
tion is compatible with the one measured experimentally. To determine the efficiency of
given module we have to prepare sample of FPC tracks without requesting this particu-
lar detector plane. In this work the efficiency of reconstructing FPC clusters have been
studied on 3He sample stemming from dd → 3Hen reaction. The ratio of the number of
reconstructed tracks with a cluster in the investigated detector plane to the total number
of reconstructed tracks defines the detection efficiency. In the right column of Fig. 4.13
efficiency for individual modules as a function of cluster position in particular module is
plotted. As can be seen, efficiency for all planes is close to 100%. The dip around zero
corresponds to the holes in each module which are necessary to provide the room for
beam pipe. Subsequently, the track segments from the FWC and FPC are checked for an
azimuthal overlap. If the condition is fulfilled then they are assigned to the same track. In
the last step the track finding procedure searches for the hits in the straight layer of FTH
and again if there is an azimuthal overlap with already formed FWC-FPC track, those
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Figure 4.13: The distribution of residuals as a function of measured cluster position for
individual modules in FPC detector (left column). Efficiency for four modules used in the
track reconstruction procedure for 3He originating from dd → 3Hen reaction.
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Figure 4.14: The resolution of polar (left) and azimuthal (right) angles. The angles recon-
structed by means of FPC have been compared to the initial ones given by generator.

hits are merged into this track. The sizes of the overlaps, time differences and a minimum
amount of deposited energy for clusters contributing to the track are defined as set of ex-
ternal parameters. The presented scheme of track reconstruction allows to connect a group
of modules from different detectors which were hit by one particle. At this stage also the
spatial information of the track is known. What is missing to get four-vector for given
particle is the energy. It can be calculated using the procedure described in section 3.2.2.
The algorithm for kinetic energy reconstruction operates on the energy deposits from the
modules of the detectors which are assigned to the track. In each track the time informa-
tion is available which is defined by the time of the hit stemming from FTH1 detector
being the part of the track. In Fig. 4.14 the averaged angular resolution for reconstructed
3He track is demonstrated.

4.3.2 Track Reconstruction in the Central Detector

The track reconstruction in the central detector makes use of an information provided by
three different types of detectors, namely Mini Drift Chamber, Plastic Scintillator Barrel
and Electromagnetic Calorimeter. For each of them separate routines for cluster recon-
struction have been implemented. The role of track reconstruction procedure is to assign
those clusters which belong to the same particle. The track finding algorithm is capable to
reproduce charged as well as neutral tracks. In this work it was employed for the neutral
tracks only, since we were interested in the measurement of the neutral pion. To recon-
struct the neutral tracks, it was sufficient to possess the information about the clusters
from PSB and SEC. The MDC detector was not of importance here, it plays crucial role
for the charged particles but for the neutral can be omitted in the track finding routine.
Here, a neutral track is defined by the presence of a cluster in the SEC with no matching
cluster in PSB detector. When photons traverse the crystals in the calorimeter they pro-
duce an electromagnetic shower which develops over a group of adjacent crystals. The
size of the shower depends on the energy of the photons. Modules involved in an electro-
magnetic shower form a cluster. It is a task of the cluster finding routine to identify and
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merge all crystals belonging to one electromagnetic shower originating from one primary
particle. The algorithm used for that purpose is an iterative procedure which operates on
the two-dimensional space. In first step routine searches for the crystal which contains
hit with the highest energy deposit. This element becomes the center of the new cluster.
Adjacent neighbors are scanned and joined to the cluster. The required criterion is that
each hit included into cluster should have energy deposit of at least 2 MeV. Moreover, an
appropriate hits should not be separated in time from reference hit by more than 50 ns. Al-
gorithm pursues search for new crystal with highest energy deposit, which is not included
in the previous cluster and the procedure to find neighboring elements is repeated. This
process is iterated until all hits in neighboring crystals have been used. Furthermore, the
routine rejects clusters with a total energy below 10 MeV. This condition reduce so-called
split-off contributions which occur due to the interactions of hadrons and leptons with the
active materials in the calorimeter. These interactions can fake electromagnetic showers
which might be considered as true neutral candidates by the reconstruction algorithm. The
total energy deposit of a cluster is evaluated by summing up the individual energy deposits
from crystals which have been assigned to the cluster. The time information of the cluster
is defined by the time extracted from the element with the highest deposited energy. The
position ~X of the cluster is calculated as the weighted sum of positions ~xi of individual
modules that form the cluster:

~X =
∑i wi~xi

∑i wi
, (4.22)

where the weights wi are associated with the energy deposited Ei in the single crystals:

wi = MAX{0,W0 + ln
Ei

∑i Ei
}. (4.23)

The value of the constant W0 has been found to be equal to 4 [68]. To distinguish neutral
clusters from the charged ones in the calorimeter the information from the Plastic Scin-
tillator Barrel is mandatory. The neutral cluster in SEC is defined by the absence of a
corresponding cluster in PSB which can be formed only when charged particles traverse
the detector. A cluster in the Plastic Scintillator Barrel can be formed by a single hit or
two hits. The latter case occurs when particle impinging the overlap region of two adja-
cent elements in the detector. The hits from neighboring modules are merged into cluster
if they are separated in time by less than 10 ns and each of them has a minimum deposited
energy of 0.5 MeV. The time information of the cluster is calculated as the mean value of
the time associated to the contributing hits. The deposited energy assigned to a cluster is
extracted from the hit with the highest energy deposit. The assignment of clusters from
SEC and PSB described in the following section allows to classify particles measured in
the central detector as the neutral one.

4.4 Particle Identification
The identification of particles in the Forward Detector has been done by means of the
specific energy loss which is described by Bethe-Bloch formula [69]. The used ∆E−∆E
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technique relies on the comparison of the deposited energy in different layers of the FD
detector. When plotting ∆E−∆E, a distinct correlation for different particles types can be
observed. In the left panel of Fig. 4.15 the energy loss in one layer of FWC detector versus
the energy loss in the first layer of FTH detector is presented. The scatter plot is dominated
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Figure 4.15: The energy loss in the Forward Window Counter versus energy loss in the
first layer of the Forward Trigger Hodoscope. The obtained energy patterns allow to dis-
tinguish between different particles types. The graphical cut indicated by black line rep-
resents the region used to select 3He candidates (left). Two photon invariant mass distri-
bution, the peak corresponding to the π0 mass is clearly visible (right).

by 3He stemming from dd → 3Henπ0. As expected, the energy resolution is good enough
to clearly distinguish between bands formed by different particles types. The descending
band inside the graphical cut indicates 3He particles stopped in the straight layer of FTH
while the lower ascending band corresponds to helium punching through the detector.
Below the marked region the energy loss patterns for deuterons and protons originating
mainly from breakup reactions are visible. Due to the threshold (see Section 6.1) in FWC
only the branch where stopped protons are grouped survived, the rest with lower energy
losses was cut out by the trigger.

After identification of 3He in the forward detector two neutral tracks in the central
detector are requested and the corresponding invariant mass is constructed. This combi-
nation provides a very efficient way for the selection of the dd → 3Henπ0 channel. In the
right panel of Fig. 4.15 the two photon invariant mass distribution is demonstrated. More
details about the coincidence technique used for particle selection will be given in section
where the experimental trigger is described.





5 Phenomenological Models

At present there is no microscopic theoretical model for description of dd → 3Henπ0 re-
action. However, some model describing the data at least qualitatively is necessary for
the acceptance corrections. Therefore simple model based on physical assumptions was
constructed. It will be used not only for acceptance corrections but it deliver also some
physical information about the reaction process. Therefore the comparison of such model
with experimental data deliver already some constraints on the microscopic calculations
that will be performed in the future.

In this section first the independent variables necessary for the presentation of three-
body reaction data are briefly discussed and the expressions for some differential cross
sections are given. Than the components of quasi-free reaction process are presented.
Finally the partial-wave decomposition for three-body reaction is introduced. All these
together are the ingredients of the phenomenological model used in the analysis of present
data.

5.1 Choice of Independent Variables

Generally for a reaction of two particles leading to n particles in the final state there are 3n
degrees of freedom corresponding to variables necessary to completely describe the final
state. The four momentum conservation reduces this number to 3n−4. Additionally, if the
particles in the initial state are not polarised, the initial state have axial symmetry. There-
fore there is one trivial variable corresponding to rotation around the beam axis direction.
Than finally for the complete description of a three-body reaction 3n−5 non-trivial in-
dependent variables are necessary. Therefore for the investigated reaction dd → 3Henπ0

with unpolarised particles in the initial state and three particles in the final state there are
four independent variables fully describing the reaction kinematics.

The natural coordinate system used commonly for the description of the three-body
reactions is given by the Jacobi-coordinates. The momenta~P,~p and~q in this system are
defined by
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~P =~p1 +~p2 +~p3

~p = 1
E2+E3

(E3~p2 −E2~p3)

~q = 1
E1+E2+E3

[(E2 +E3)~p1 −E1 (~p2 +~p3)]

(5.1)

where the outgoing particles momenta are denoted by~p1,~p2,~p3 and the total energies of
particles are E1, E2, E3. Using the cyclic permutation of indices it is possible to obtain
other two equivalent sets of Jacobi momenta. For the description of the reaction it is
most convenient to use the center-of-mass reference frame. Then the Jacobi momenta
have simple interpretation visible in Fig. 5.1. In the following this coordinate system will
be used with the z-axis along the beam momentum direction. Since the description is in
center-of-mass system than~P= 0 and one obtain the condition~p2+~p3 =−~p1. Solving Eq.
5.1 with this condition and applying Lorentz transformation to the subsystem of particles
2-3 one obtains expressions for momenta~p and~q

Figure 5.1: Jacobi momenta and angles definitions for a three-body reaction.

~p = 1
E2+E3

(E3~p2 −E2~p3) = ~p′2 ,

~p =− 1
E2+E3

(E3~p2 −E2~p3) =−~p′3 ,

~q =~p1 .

(5.2)
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Therefore the interpretation of Jacobi momenta is following:~q is the momentum of
a particle 1 in the global center-of-mass system,~p is the momentum ~p′2 of particle 2 in
center-of-mass of the subsystem 2-3.

The momentum vectors~p and~q fully describe the kinematics of the three-body reac-
tion. However for three-body reaction there are only four independent variables necessary
for the full description. In the following they will be chosen as: M23 - invariant mass of
the 2-3 subsystem, cosθq - cosine of the angle between the momentum vector~q and beam
momentum (z-axis) in global center-of-mass system, cosθp - cosine of the angle between
momentum vector ~p and beam momentum (z-axis) in the global center-of-mass system
and ϕ - relative angle between planes defined by ~q and beam momentum and by ~p and
beam momentum.

5.2 Cross Section

The total cross section is a normalised integral of the transition probability over the whole
available phase space. According to [70] the total cross section for 3-body reaction may
by expressed by

σ =
1

2
√

λ(s,M2
a ,M2

b)(2π)5

∫ 3

∏
i=1

d3pi

2Ei
δ4

(
Pa +Pb −

3

∑
j=1

Pj

)
|T|2 , (5.3)

where s is the square of invariant mass in the entrance channel, Ma, Mb are the masses
of beam and target particles, Pa, Pb and Pj denote four-momenta of the beam, target and
outgoing particles, pi are components of momentum vectors of outgoing particles. The
transition matrix T is a function of four independent variables which are expressed by the
momenta of all particles involved in the reaction. The λ function is defined as

λ(x,y,z) = x2 +y2 + z2 −2xy−2yz−2zx . (5.4)

Using the λ function, the entrance channel center-of-mass momentum may be ex-
pressed as

P∗
a = P∗

b =

√
λ(s,M2

a ,M2
b)

2
√

s
. (5.5)

Similarly the absolute value of the Jacobi momenta may be calculated

q =

√
λ(s,M2

1,M
2
23)

2
√

s
, p =

√
λ(M2

23,M
2
2,M

2
3)

2M23
, (5.6)

where M1, M2 and M3 are the masses of the outgoing particles.
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In the expression 5.3 certain integrations may be performed up to the moment when
only four independent variables remain. For these integrations it is sufficient to calculate
phase space only since |T|2 is a function of four independent variables only. The three-
body phase space R3 my be calculated from the formula [70]

R3 =
∫

ds23R2(s,M2
1,s23)R2(s23,M2

2,M
2
3) , (5.7)

where s23 = M2
23. As the 2-body phase space R2 one may use the formulae [70]

R2(s,M2
1,s23) =

q
4
√

s

∫
dΩq =

q
4
√

s

∫
dcosθqdϕq ,

R2(s23,M2
2,M

2
3) =

p
4
√

s23

∫
dΩp =

p
4
√

s23

∫
dcosθpdϕp ,

(5.8)

where dΩp and dΩq are the solid angles, θp and θq are polar angles, ϕp and ϕq are az-
imuthal angles of momentum vectors~p and~q in global center-of-mass system. Inserting
equation 5.8 to expression 5.7 one obtains

R3 =
1

16
√

s

∫
pq

ds23√
s23

dcosθqdϕqdcosθpdϕp . (5.9)

For the unpolarised beam and target one may integrate over one of the polar angles
living only the relative polar angle ϕ = ϕp −ϕq. One may use invariant mass M23 =

√
s23

of the subsystem 2-3 instead of using s23. Using these substitution equation 5.9 may be
rewritten in the form

R3 =
2π

8
√

s

∫
pqdM23dcosθqdcosθpdϕ . (5.10)

The choice with equations 5.8 and further steps define the independent variables that
may be used for description of three-body reaction and they are M23, cosθq, cosθp and ϕ.
Up to now the integrations were performed over dependent variables therefore the result
given by equation 5.10 for the phase space is valid also for the cross section. Inserting
equation 5.10 into equation 5.3 and using equation 5.5 the four-fold differential cross
section may be expressed in the form

d4σ
2πdM23dcosθqdcosθpdϕ

=
1

32(2π)5sP∗
a

pq|T|2 . (5.11)

The integration over some of independent variables leads to the expressions for single
differential cross sections as e.g. dσ/dM23, dσ/2πdcosθq, dσ/2πdcosθp, dσ/dϕ.
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5.3 Quasi-Free Reaction Model
A neutron and a proton are loosely bound in a deuteron. Therefore in high momentum
transfer reactions in which deuteron is involved, the reaction can proceed via interaction
with a single nucleon of the deuteron, while the second nucleon is a spectator. The impor-
tance of such reaction mechanism is limited only to some regions of the phase space, in
which the spectator nucleon have the same momentum as in the deuteron. This remains
the main characteristic of the quasi-free reaction mechanism and is used to check the va-
lidity of this model. Experimentally the quasi-free approximation was checked comparing
data for proton-proton induced reactions with reactions induced by proton-deuteron ini-
tial state with a neutron spectator. The comparison was performed for pion production
reactions [71, 72] and for η production [73, 74]. Very good agreement of the total cross
sections measured with these two methods demonstrated validity of the quasi-free approx-
imation. In present analysis the quasi-free reaction model was used as a part of the theoret-
ical approach. The two-body reaction pd → 3Heπ0 was considered as the quasi-free part
of the three-body dd → 3Henπ0 reaction. Since in investigated reaction two deuteron’s
are involved the reaction may proceed with projectile or target neutron spectator. The
quasi-free reaction have been shown schematically in Fig. 4.3 in Section 4.1.2. It is seen
that full description of the quasi-free contribution to dd → 3Henπ0 reaction can be ob-
tained using the cross section for pd → 3Heπ0 in the proper energy range convoluted with
the momentum distribution of the proton in the deuteron. The calculations of the cross
section for pd → 3Heπ0 reaction are rather difficult. Therefore, instead of the theoreti-
cal calculations the existing data parametrisation was used. The available data for the
differential cross section for pd → 3Heπ0 reaction cover the energy range from the thresh-
old up to 10 MeV above threshold [75]. There are also measurements at higher energies
corresponding to excess energy above threshold of 40, 60 and 80 MeV [76]. Use of the
parametrised experimental cross section for pd → 3Heπ0 reaction have additional advan-
tage. It may be expected that in such treatment the quasi-free contribution will be abso-
lutely normalised. The momentum distribution of the nucleons in the deuteron can be ob-
tained using deuteron wave-function. In the present analysis an analytically parametrised
deuteron wave function based on the Paris potential [60] was used. In the data that we
have collected not whole distribution of the proton momentum in deuteron is accessible.
The deuteron beam momentum for dp → 3Heπ0 reaction (with target proton at rest) corre-
sponding to the reaction threshold is 1.284 MeV/c. In the present experiment the deuteron
beam momentum was 1.2 MeV/c. Therefore in present data the dp → 3Heπ0 reaction will
occur as quasi-free process only involving protons which sufficiently large momenta in
the deuteron target. In order to reach the threshold for dp → 3Heπ0 reaction the proton in
the deuteron target must have the momentum of at least 35 MeV/c.
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5.4 Partial Wave Expansion for a Three-Body Reac-
tion

Partial wave expansion is a commonly used method for the analysis of nuclear and ele-
mentary particle reactions [77, 78]. This method is very useful since due to short range
of strong interaction only limited number of partial waves (and accordingly limited num-
ber of expansion coefficients) is sufficient for description of the reaction. Each partial
wave corresponds to the angular momentum within the system. If the energy available for
the reaction is small than only small angular momenta are allowed. In a special case of
a reaction with the energy close to reaction threshold it is usually sufficient to consider
only processes with s-wave (angular momentum equal 0) and p-wave (angular momentum
equal 1).

In the textbooks as e.g. [77] usually the formulae for two-body reaction are given.
Here the general formulae for the three-body case are presented, which are more com-
plicated since more couplings of spins and angular momenta are required. In following
these couplings are directly related to the choice of independent variables used in the
description of the three-body reaction as discussed in section 5.1.

Denote spin of the incident particles by~sa,~sb and for outgoing particles by~s1,~s2
and~s3. The orbital angular momenta are ~Li - entrance channel, ~L1 - particle 1 in global
center-of-mass system, ~L23 - particle 2 in subsystem 2-3. The total angular momenta are
~J - entrance and exit channel (they are equal due to angular momentum conservation),
~j1 - particle 1 in global center-of mass system,~j23 - particle 2 in subsystem 2-3. As the
quantisation axis (z-axis) it is most convenient to use the beam direction.

For the entrance channel one may define total spin~si =~sa +~sb, than the total angular
momentum is~J =~si +~Li. When adding spins and/or angular momenta one has to use
Clebsch-Gordan coefficients which contain the projections onto z-axis (ma, mb, mLi , mJ
for spins, orbital angular momentum and total angular momentum correspondingly).

For exit channel one may define spin for subsystem 2-3~s23 =~s2+~s3 and total angular
momentum for subsystem 2-3~j23 =~s23 +~L23. Similarly one may define total angular mo-
mentum for particle 1~j1 =~s1 +~L1. These total angular momenta are coupled to entrance
total angular momentum ~J =~j1 +~j23. For each sum of spins and/or angular momenta
one has to use their projections onto z-axis (denoted by m1, m2, m3 for spins, mL1 , mL23

for orbital angular momenta and mj1 , mj23 for total angular momenta) and corresponding
Clebsch-Gordan coefficients.

The coupling may be performed in a different order, first adding all spins to the total
exit channel spin, then adding all orbital angular momenta to total angular momentum in
the exit channel, and then adding total spin and total orbital angular momentum to total
angular momentum J. Such coupling is equivalent to the coupling described above. One
obtain the same number of amplitudes, however, they are labeled by different set of the
quantum numbers. There is a unique relation between the amplitudes obtained with these
two couplings.
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With such decomposition one obtains amplitudes aα which are labeled by quantum
numbers denoted by α = (si,Li,s23, j23,L23,L1, j1,J). Using these amplitudes one my ob-
tain total transition amplitude which is labeled by projections of all spins involved. This
transition amplitude is obtained as a sum over all possible α of the product of correspond-
ing Clebsch-Gordan coefficients, amplitudes aα and spherical harmonics for L23 and L1.
The spherical harmonics Y

mL23
L23

(p̂) and Y
mL1
L1

(q̂) as the argument have the direction of ver-
sors p̂ and q̂ with respect to the z-axis.

Additionally the parity conservation constraints should be inserted into the formula.
Internal parity of the particles participating in the reaction is denoted by Πa, Πb, Π1, Π2,
Π3. Then the entrance channel parity is Πi = (−1)LiΠaΠb and the exit channel parity is
Πf = (−1)L1+L23Π1Π2Π3. Parity conservation requires that Πi = Πf therefore one should
include in the formula for amplitude the Kronecker delta function δΠi,Πf .

For identical particles in the entrance channel additional constraints on the Li + si
should be included. For identical bosons the symmetry of the entrance channel wave
function requires that Li + si should be even, while for fermions the antisymme-
try of the wave function requires that Li + si should be odd. Therefore for identical
bosons the identity function is δidentity = δLi+si (mod 2),0 and for identical fermions it is
δidentity = δLi+si (mod 2),1.

Finally the transition amplitude labelled with all spin projections may be written in
the form

Tma,mb
m1,m2,m3

= ∑
si,Li,s23,j23,
L23,L1,j1,J

〈sa,ma,sb,mb|si,ma +mb〉〈Li,0,si,ma +mb|J,ma +mb〉

〈s2,m2,s3,m3|s23,m2 +m3〉〈s1,m1,L1,mL1 |j1,mj1〉
〈s23,m2 +m3,L23,mL23 |j23,mj23〉〈j1,mj1 , j23,mj23 |J,ma +mb〉
δΠi,Πfδidentityasi,Li,s23,j23,L23,L1,j1,J

√
2Li +1Y

mL23
L23

(p̂)Y
mL1
L1

(q̂) (5.12)

with following substitution mj1 = m1 +mL1 , mL23 = ma +mb −mL1 −m1 −m2 −m3,
mj23 = ma +mb −mL1 −m1.

The transition probability is obtained by averaging over spin projections in the en-
trance channel and sum over all spin projections in the exit channel of the squared transi-
tion amplitude

|T|2 = 1
(2sa +1)(2sb +1) ∑

ma,mb,
m1,m2,m3

|Tma,mb
m1,m2,m3

|2 . (5.13)
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5.4.1 Momentum Dependence of Partial Amplitudes

The transition probability |T|2 in equation 5.13 is a function of four independent vari-
ables: M23, θp, θq and ϕ. The dependence on the angles is explicitly contained in the
spherical harmonics in equation 5.12. There the amplitudes aα may depend only on M23
or equivalently on momenta p and q. This dependence cannot be found without micro-
scopic calculations, however, one can make some predictions under simple assumptions.

Generally when deriving the transition amplitude f the integral of some transition
operator V multiplied by the initial Ψi and final Ψf state asymptotic wave functions have
to be calculated. The wave function Ψi depend on the initial momentum and the wave
function Ψf for the three-body depend on momenta p and q.

f ∝ 〈Ψf(p,q)|V|Ψi(P∗
a)〉 . (5.14)

If there are no long range interactions (as e.g. Coulomb interaction) the wave func-
tions can be approximated by the plane waves. The plane wave for momentum Q can be
expanded in terms of partial waves and asymptotically can be expressed by the Bessel
function jL(QR), where R is a range of interaction and L is an angular momentum [78].
Expanding the Bessel function into powers of QR leads to the first term proportional to
QL. Therefore in good approximation each plane wave ΨPW can be approximated by

ΨPW(Q) ∝ QL . (5.15)

In the investigated dd → 3Henπ0 reaction all outgoing particles are neutral. Therefore
it is well justified to replace the final state wave function by product of two plane wave
functions, which can be expressed by the first term of the expansion of the Bessel function.
Finally it may be expected that the momentum dependence of the transition amplitude for
the three-body reaction can be well approximated by

f ∝ pL23qL1 . (5.16)

Therefore additional momentum dependence of amplitudes aα in equation 5.12 was
taken in the form pL23qL1 . This leads to the explicit momentum dependence of the cross
section of the form p2L23q2L1 .

It should be pointed out that this approach neglect other possible momentum depen-
dencies of the transition amplitude. They may appear e.g. due to final state interaction
or due to the presence of the resonances in any subsystem of two final particles. The pi-
ons have usually small final state interaction with nucleons, therefore it may be neglected
for 3He−π0 and n−π0. The final state interaction 3He−n can be strong. However, for
dd → 3Henπ0 reaction the isospin symmetry requires the 3He−n system to be in the state
with the total isospin equal to one. The first 4He excited levels with isospin one which may
be responsible for final state interaction are at about 20 MeV and are quite broad [79].
Therefore no strong final state 3He−n interaction is expected.
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assignment number particle 1 particle 2 particle 3 subsystem 2−3

1 3He n π0 n−π0

2 n π0 3He π0 − 3He

3 π0 3He n 3He−n

Table 5.1: Possible independent assignments of the particles for dd → 3Henπ0 reaction.
The permutation of the particles in subsystem 2-3 leads to the same description of the
reaction.

5.4.2 Cross Section for dd → 3Henπ0 Reaction

Using MATHEMATICA [80] the partial wave expansion for dd → 3Henπ0 reaction was
performed limiting to the s- and p-wave in the exit channel. In the choice of independent
variables described in section 5.1 as well in the partial wave expansion there is a freedom
to assign particle denoted by 1 and two remaining particles forming subsystem 2-3. In
the present case the three independent assignments shown in Tab. 5.1 are possible. For
each assignment it is possible to perform the partial wave expansion. It results in the
partial wave amplitudes aα which are labelled by quantum numbers specific for a chosen
assignment and therefore they have different interpretation. However, it is always possible
to express amplitudes aα for a given assignment by such amplitudes for other assignment
with the proper re-coupling of spins and angular momenta. An example of the resulting
amplitudes aα for assignment 2 from Tab. 5.1 is presented in Appendix A.

With these amplitudes and taking into account explicitly their dependence on the mo-
menta the four-fold differential cross section may be generally represented as:

d4σ
2πdM23dcosθpdcosθqdϕ

=
pq

32(2π)5sP∗
a(2sa +1)(2sb +1)

[
A0 +A1q2+

A3p2 +
1
4

A2q2 (1+3cos2θq
)
+

1
4

A4p2 (1+3cos2θp
)
+

A5pqcosθp cosθq +A6pqsinθp sinθq cosϕ
]
. (5.17)

The term with A0 corresponds to sS partial waves, the terms with A1 and A2 corre-
spond to pS partial waves, the terms with A3 and A4 correspond to sP partial waves and
terms with A5 and A6 correspond to pS and sP waves interference. If there are no ad-
ditional dependencies of Ai on the outgoing particles momenta the equation 5.17 should
fully describe the cross section for a three-body reaction.
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The general form of the cross section 5.17 is the same for all possible assignments of
the particles given in table 5.1. However, the physical meaning of amplitudes Ai depend
on the specific assignment. There is no direct relation between amplitudes Ai for different
particle assignments similar to that which can be found for amplitudes aα.

The cross section 5.17 can be integrated over some of the independent variables in
order to obtain single differential cross section used in further analysis. The integration
over angles may be performed analytically, while the integration over M23 have to be
performed numerically. The corresponding integrals over M23 will be denoted by

IsS =
∫ (

√
s−M1)

2

(M2+M3)2
pqdM23 , (5.18)

IpS =
∫ (

√
s−M1)

2

(M2+M3)2
pq3dM23 , (5.19)

IsP =

∫ (
√

s−M1)
2

(M2+M3)2
p3qdM23 , (5.20)

IpS+sP =
∫ (

√
s−M1)

2

(M2+M3)2
p2q2dM23 , (5.21)

The constant factor in equation 5.17 will be denoted by

C =
1

32(2π)5sP∗
a

1
(2sa +1)(2sb +1)

(5.22)

The integration over cosθp, cosθq and ϕ gives the invariant mass M23 distribution

dσ
dM23

= 16π2Cpq
[
A0 +A1q2 +A3p2] . (5.23)

The integration over M23, cosθq and ϕ gives the angular distribution for θp

dσ
2πdcosθp

= 4πC
[

A0IsS +A1IpS +A3IsP +
1
4

A4
(
1+3cos2θp

)
IsP

]
, (5.24)

and similarly the integration over M23, cosθp and ϕ gives the angular distribution for θq

dσ
2πdcosθq

= 4πC
[

A0IsS +A1IpS +A3IsP +
1
4

A2
(
1+3cos2θq

)
IpS

]
. (5.25)

Finally the distribution for ϕ is obtained by integration over M23, cosθp and cosθq
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dσ
dϕ

= 8πC
[

A0IsS +A1IpS +A3IsP +
π2

16
A6IpS+sP cosϕ

]
. (5.26)

In the single cross section formulae for four the independent variables the term with
amplitude A5 does not appear. This term describes the correlation between θp and θq
angles. It is possible to construct the expression for the cross section containing term A5
using different variables as e.g. cosθp − cosθq or cosθp + cosθq. The differential cross
section in these variables has a form:

dσ
2πd(cosθp ± cosθq)

= 4πC
[

A0IsS +A1IpS +A3IsP ∓
1
3

A5IpS+sP−

1
2
(
A0IsS +A1IpS +A3IsP +A2IpS +A4IsP ±A5IpS+sP

)
|cosθp − cosθq|+

3
4
(
A2IpS +A4IsP

)
|cosθp − cosθq|2−

1
4

(
A2IpS +A4IsP ∓

1
3

A5IpS+sP

)
|cosθp − cosθq|3

]
. (5.27)





6 Analysis of the dd→3→3→3He n π000

6.1 Run Summary

The data presented in this work have been collected during ten days of production run in
the end of 2007. In the experiment the deuteron beam with kinetic energy Ekin = 0.350
GeV (pbeam = 1.2GeV/c) impinging on a deuterium pellet target was used to initiate the
reaction dd → 3Henπ0. In the Tab. 6.1 an overview of experimental conditions during the
data taking period is presented. In the left panel of Fig. 6.1 the beam intensity as mea-

beam energy 0.350 GeV
beam momentum 1.2 GeV/c
pellet rate 4 - 8 kHz
events per pellet 2 - 4
deuterons in flat top 6 ·109

typical luminosity ≈ 1030 cm−2s−1

integrated luminosity ≈ 350 nb−1

magnetic field of the solenoid 1 T
main trigger fwHea1|fwHeb1|Vfrha1|seln1
cycle length 54 s
data taking within cycle 43 s
duty factor 0.8
DAQ life time 88 %
effective data taking time 420000 s

Table 6.1: List of the parameters valid for production run performed in November 2007.

sured by a beam current transformer (BCT) over the time in cycles is shown. A typical
beam cycle obtained during the experiment had a length of 54 s. The visible drop in the
intensity is due to the beam target interaction. The flat top period when the beam energy is
kept constant and the data are registered by the DAQ system was approximately 43 s. The
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variation of the trigger rates over the cycle are illustrated in the right panel of Fig. 6.1.
By measuring the ratio of issued and accepted trigger signals, the life time of the data
acquisition system was estimated to be 88%.
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Figure 6.1: The beam intensity over the time in cycles (left). The ratio of accepted to the
incoming triggers as a function of time in cycle (right).

During the experiment all detector components of WASA-at-COSY were fully operat-
ing. The newly installed Forward Window Counter showed an excellent performance. All
modules revealed very uniform (i.e. position independent) response, which was crucial
for triggering. This made possible to achieve a high selectivity and efficient background
suppression already on the trigger level. For triggering on dd → 3Henπ0 a coincidence be-
tween a high energy deposit in both layers of the Forward Window Counter, one or more
low energy (E > 20 MeV) neutral clusters in the calorimeter and a veto condition on the
first layer of the Forward Range Hodoscope was used. The latter criterion was imposed
by small energy of helium ejectiles which are stopped latest in the third layer of the FTH.
The threshold in FWC was chosen such that protons (mainly from deuteron break-up)
were discriminated while tritons were still in trigger. With these settings the rate from
main trigger occupied only up to 20% of the DAQ capabilities (i.e. less than 2000 trig-
ger/s). Thus, it was sufficient room to include into the trigger also other isospin conserving
channels as dd → 3Hepπ−, dd → tpπ0 and dd → tnπ+.

To verify if any severe changes of the beam momentum have occurred over the ac-
celerator cycle the behavior of the neutron missing mass in function of time has been
checked. The distribution shown in left panel of Fig. 6.2 indicates that beam momentum
was kept stable over the time in cycle. This is proven by the position of the missing mass
which is centered at the exact mass of the neutron. In order to monitor the performance
of the central detector during the experiment, the position of invariant mass of two pho-
tons as a function of run number was plotted. The obtained dependence is shown in right
panel of Fig. 6.2. The data points are positioned at the pion mass within the statistical
fluctuations.
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Figure 6.2: The behavior of the neutron missing mass reconstructed from 3He and π0 over
the time in cycle. The slices of the two dimensional distribution were projected onto Y-
axis and fitted with gauss function. The mean value obtained from the fit for each slice is
indicated by gray horizontal line (left). The invariant mass of two photons as a function
of run number (right).

6.2 Event Selection

This chapter contains the preselection criteria that were designed to preferentially select
dd→ 3Henπ0 events over background processes. In this work two stages of event selection
can be distinguished. First is based on hardware triggers while the second makes use of
characteristic signature of the physics process we are interested in.

The main trigger fwHea1|fwHeb1|Vfrha1|seln1 set up during the experiment was
based on a logic AND of the following trigger patterns:

fwHea1|fwHeb1 - a high threshold on signals from geometrically overlapping ele-
ments in both layers of Forward Window Counter detector;

Vfrha1 - veto on any hits in the Forward Veto Hodoscope;

seln1 - one or more neutral clusters in the calorimeter.

The data picked up by this trigger still consists of a large collection of unwanted
events. In order to keep only events of interest and to reduce computation time a
preselection has been performed. The data were presorted by imposing set of relatively
loose requirements listed in Tab. 6.2. The most influential cut applied on light output in
FWC1 detector reduced the initial amount of data by approximately 80%. The optimal
value for this condition has been found by varying the level of cut and checking how
the invariant mass of the two photons is influenced. The multiplicity condition set for
the Forward Detector means that we require exactly one charged particle track. In order
to be able to reconstruct the angles of particles detected in FD the demand on number
of clusters in FPC detector is imposed. Additional selection criteria are based on the
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information from Central Detector. To select event candidates for the decay of π0 → γγ
only those events are accepted which contain two neutral clusters in the calorimeter.
The MC simulations have shown that photons originating from dd → 3Henπ0 have
energy above 20 MeV and opening angle larger than 30◦. Those restrictions were set
during the preselection to suppress signals not stemming from the channel of interest.
The time difference between the detection of products of pion decay has to be smaller
than 40 ns (see Fig. 6.3). It is noteworthy that all conditions applied for the Central

Forward Detector

Track multiplicity = 1
Cluster multiplicity in FPC ≥ 2
Light output in FWC1 ≥ 3800 ch
The reference signals from the LPS ON

Central Detector

Cluster multiplicity in PSB = 0
Cluster multiplicity in SE = 2
Time difference between clusters in SE ≤ 40 ns
Opening angle between clusters in SE ≥ 30◦

Cluster energy in SE ≥ 20 MeV
The reference signals from the LPS ON

Table 6.2: The criteria of events preselection.

and the Forward detectors have to be fulfilled in coincidence. To ensure that 3He and
photons originate from the same event, a cut on the time correlation shown in Fig. 6.3 has
been performed. In order to correct for the gain drifts, information from the light pulser
system was included during the preselection process. To minimize edge effects due to the
geometry of the detector, an additional constraint was applied to the scattering angles of
the reconstructed tracks. In the Forward Detector tracks with scattering angles from 3◦ to
18◦ were considered while in the Central Detector only photons with θ angles limited to
the range between 20◦ - 169◦ have been accepted. The validation of the trigger condition
was achieved by a request that each event must have energy deposit in both layers of the
FWC detector and in the first layer of the FTH as well as one or more neutral clusters in
calorimeter. Moreover, there should be no hit in FVH.
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For the selected events the four-vectors of the reconstructed particles were used to
calculate the missing mass according to formula:

MM(3Heπ0) =
√

Pb
d +P t

d −P3He −Pπ0 . (6.1)

The right panel of Fig. 6.3 presents the missing mass, built of helium and two photons
obtained during presorting. The distribution shows the expected peak at the mass of the
neutron.

Utilizing presented cuts, a relatively pure sample of dd → 3Henπ0 candidates have
been obtained. This preselected data were refined by improving the energy calibration and
applying the kinematic fit. The precise calibration guarantees the separation of 3He from
lighter particles what yields to complete background elimination. On this level of analysis
energy resolution and thresholds for individual detectors are computed. These values are
used to smear Monte Carlo data in order to reproduce the experimental resolution.
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Figure 6.3: The correlation between mean time of two neutral cluster in calorimeter and
time detection of 3He measured by FTH1 detector (left). Time difference between two
neutral tracks in Central Detector. The tracks are accepted within a time window denoted
by red dashed lines (middle). Missing mass reconstructed from 3He detected in the For-
ward Detector and two photons measured in the Central Detector (right).

6.3 Kinematic Fit
The kinematic fit is a least-square fit with constraints based on the Lagrange multipliers
technique. The detailed description of the method can be found in Ref. [81,82]. The basic
idea behind the use of kinematic fit is to improve the resolution of measured kinematical
variables. All quantities we measure, e.g. energy or angles, have uncertainties which can
manifests itself in the population of kinematically forbidden regions of the phase space.
The purpose of kinematic fit procedure is to vary measured observables within the un-
certainty until certain kinematic constraints are fulfilled. Limits for variation of measured
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parameters are determined by the experimental resolution. The constraints are based on
physical properties of studied processes and are used to test hypotheses for given reac-
tion. As a result of the kinematic fit the corrected values of energies and angles as well
as a value of the correspondingχ2 is returned. The latter is used to validate fit results. If
the proper hypothesis is selected and all resolutions used as input for the kinematic fit are
Gaussian shaped then the χ2 probability function with N degrees of freedom defined as:

P(χ2|N) =
1√

2NΓ(1
2 N)

∫ ∞

χ2
e−

1
2 tt

1
2 N−1dt (6.2)

should have flat distribution between 0 and 1.

6.3.1 Fit Constraints

The kinematic fit for the reaction dd→ 3Henπ0 makes use of five constraints. Four of them
are related to the overall energy and momentum conservation. Additionally the demand
on mass of π0 has been applied. After the definition of reaction hypothesis the information
about measured and unmeasured parameters are passed to the fitting routine. In our case
we measure 3×3 parameters namely the energy, polar and azimuthal angles of helium and
two photons. The neutron is undetected thus we have 3 unmeasured parameters. Having
that information the number of degrees of freedom can be calculated as:

N = 4+nc −u (6.3)

where 4 stands for the four conditions due to the four-momentum conservation, nc is
the number of additional constraints and u denotes the number of unmeasured variables.
Inserting appropriate values to the Eq. 2.2 results in N = 2.

6.3.2 Error Parametrization

Proper parametrization of uncertainties of the measured physical quantities is one of the
most critical part when preparing input for kinematic fit. This is because the fitting routine
minimises the χ2 using the constraints supplied by varying the experimentally measured
parameters. The error description can be determined from MC simulation, by compar-
ing the reconstructed observables to the initial values given by the event generator. This
procedure can be applied only when experimental data are well reproduced by simula-
tion. Such a prerequisite is realized by smearing of the simulated observables until they
match experimental resolutions. The errors for the kinetic energies, polar and azimuthal
angles are computed as the absolute difference of the reconstructed and true values from
generator.
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Figure 6.4: The error parametrization of the reconstructed variables θ ,ϕ and Ekin.

∆Ekin = Erec −Egen ,

∆θ = θrec −θgen ,

∆ϕ = ϕrec −ϕgen .

The distributions are fitted with a Gaussian function and the obtained width σ is
treated as an error of given variable. Systematic studies of the error distributions have
been performed by checking if σ(∆Ekin), σ(∆θ) or σ(∆ϕ) depend on kinetic energy and
scattering angle. For that purpose two dimensional parametrization was applied. The ki-
netic energy range 130 - 220 MeV for 3He was divided into seven slices of 12 MeV each
and the scattering angle range 15◦ was divided into fifteen intervals of 1◦ size. In that way
whole two dimensional space can be separated into close to one hundred cells. For each
cell the errors of Ekin, θ and ϕ are computed. The variation of errors as function of ki-
netic energy and scattering angle for 3He are presented in upper row in Fig. 6.4. Here, the
left plot shows that errors of polar angles of 3He decrease exponentially with the kinetic
energy. In the middle picture of the same row, the resolution of the 3He azimuthal angle
is shown. As can be seen the error is independent of the energy and rises approximately
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linearly with increasing polar angle. The last plot in upper row illustrates the behavior of
the error of kinetic energy. One can notice there is almost no dependence on scattering
angle and the error is dominated by changes in kinetic energy itself. The resolution gets
worse for high energetic 3He. Worsening of resolution can be attributed to smaller energy
deposit of 3He in the detector, what affects the energy reconstruction procedure. In the
lower row of Fig. 6.4 similar considerations were conducted for photons. Left plot shows
that the error of polar angle can depend on the part of the calorimeter where photons were
detected. For the forward and backward end-caps where the sizes of crystals are smaller
than in the central part the errors are larger. This situation holds also for description of the
error of azimuthal angle. In the most right plot the errors of kinetic energy are displayed.
They do not depend on scattering angle and get larger with the increase of the energy.

For the parametrization of errors of the kinematic observables which reveal only de-
pendence on one variable, an analytic functions were used. In case of σ(∆Ekin) for 3He
and σ(∆θ) for photons, where variation of errors behave in more complicated way two
dimensional tables were prepared. For given value of kinetic energy and scattering angle
we can do a table lookup and extract corresponding error.

Before applying the error parametrization some additional studies of systematic de-
viations have been performed. One noteworthy example is the azimuthal angle of 3He
measured in the Forward Detector. The procedure which reconstructs the angles assumes
that particles in FD follows a straight track from the vertex, but in reality part of the track
lies in the magnetic field of the solenoid. This results in curved trajectories in the region
close to vertex. To compensate for this effect the corrections according to [83] have been
applied:

∆ϕ =
0.3 ·L · z ·B

P · cosθ
(6.4)

where z is the charge of the particle in units of electron charge, B is the magnetic field
in Tesla, L is the longitudinal component of the particle trajectory in meters, P is the
momentum of the particle in GeV/c and θ is the polar angle.

6.3.3 Probability Distribution

The measured parameters of two photons and helium which are given as an input to the
kinematic fit are modified within the error limits of that parameter. These modified values
can be interpreted in terms of probabilities and χ2 distribution.

In Fig. 6.5 the χ2 and the corresponding probability distribution for all fitted events
in the data as well as Monte Carlo simulation are shown. The distributions have been
obtained for the dd → 3Henπ0 hypothesis in the kinematic fit. Events which have high χ2

values are located in the region close to zero in the probability distribution. Those events
are not of interest because they most likely do not well satisfy the constraints applied to
the fitting procedure. On this level of analysis the data are almost background free (see
the right panel of Fig. 6.3) so the rise in the probability distribution for large χ2 values
can not be attributed to background contributions. Since such a trend is also visible in MC
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Figure 6.5: χ2 distribution (left) and the probability distribution (right) obtained from the
kinematic fit. The gray histograms represent the data while in red the MC distributions are
shown.

it indicates this can be the issue of the error estimation. Least square fit needs Gaussian
shaped resolutions as input. Of course, in real life measurement errors rarely follow this
distribution exactly and usually have some significant non-Gaussian tails. To verify the
correctness of the obtained errors, pull distributions were constructed. The pull value is
defined as the difference between measured υrec and fitted υfit values obtained by the
kinematic fit, normalized by the quadratic error difference.

Pull =
υrec −υfit

σ2
rec −σ2

fit
(6.5)

The minus sign in the denominator comes from the correlation between the measured and
fitted observables. If the errors are correctly estimated and there are no systematic shifts,
then the pull quantity will be distributed like a Gaussian centered at zero with σ equal to
1. The examples of pull distributions for experimental data are shown in Fig. 6.6. One can
observe that pulls for energy approximately obey a Gaussian distribution. In case of pulls
constructed for polar angles, deviation from a Gaussian shape is noticeable. The discrep-
ancy in the width from unity demonstrates the underestimation of the measurement error.
On the other hand the reason for such a behavior can also lie in the fact that kinematic
fit improves mainly the energy resolution, but has almost no effect on the angular ob-
servables. This leads to the situation where in the denominator two comparable quantities
appear what can result in some numerical problems. Under investigation was also influ-
ence of the fact that neutron was treated in the kinematic fit as an unmeasured particle.
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Figure 6.6: Example pull distributions of kinetic energy and polar angle for photons and
helium. Plots were made for experimental data. Pulls have been fitted with Gaussian func-
tion (red lines). The results of the fit indicate there is no systematic shift between the
reconstructed and true values, however errors for some variables after the fit are underes-
timated.

For such a case it is important to provide reasonable starting values for the unmeasured
variables. In this approach the kinematic constraints are linearized at each iteration step
and Newton’s method is used to find the minimum. Thus to avoid a risks of non conver-
gent solution or finding some other local minimum the starting values for neutron were
extracted from the missing four momentum vector.

For further analysis events with a probability value below 0.1 have been excluded.
Those events do not well satisfy the constraints applied in kinematic fit, either because
they were wrongly reconstructed or they stem from background. The criteria used to select
the limit for the probability cut are presented in section 7.2.
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6.4 Comparison of Simulation and Experimental
Data

Before comparing results of simulations with the experimental data the symmetrization
procedure has been applied to the data. This step was performed in order to reproduce
events which were lost due to the acceptance limitations. When looking on angular dis-
tributions of 3He in center-of-mass system (see left panel of Fig. 6.7) one can observe
the lack of events close to cosθHe = 1 and for cosθHe < 0. The first appears because of
geometrical boundaries of FD detector while the latter is due to the energy threshold. The

HeΘcos
-1 -0.5 0 0.5 1

 / 
1/

sr
Ω

dN
/d

0

10000

20000

30000

40000

50000

60000

70000

80000

HeΘcos
-1 -0.5 0 0.5 1

 / 
1/

sr
Ω

dN
/d

0

10000

20000

30000

40000

50000

60000

70000

80000

Figure 6.7: The distribution of scattering angle in CM system plotted for 3He. All events
located above cosθ > 0 (denoted by dashed, blue line) undergo of symmetrization (left).
The same plot after symmetrization procedure (right).

symmetrization was realized in the following manner. First, 3He four momentum vector
is calculated in the global center of mass system and only events which fulfill condition
cosθHe > 0 are considered. In each such an event for helium, neutron and pion the Pz com-
ponent of momentum vector is replaced by −Pz. The symmetrized angular distribution of
3He in center-of-mass system is shown in right panel of Fig. 6.7.

After applying all the selection criteria described in section 6.2, the experimental
data can be presented in the Jacobi-coordinates system (see Section 5.1). The corre-
sponding distributions for three independent assignments (see Tab. 5.1) of the particles
in dd → 3Henπ0 reaction are displayed in Fig. 6.8 - Fig. 6.10. To describe the experimen-
tal distributions shown in Fig. 6.8 - Fig. 6.10 two phenomenological models presented in
Section 5 were employed. Let us first concentrate on quasi-free reaction model. In this ap-
proach, reaction dd → 3Henπ0 may proceed with a spectator neutron stemming from the
deuteron beam or the deuteron target. For the latter case we have constructed generator
(description in 4.1.2 and 5.3) in which any produced spectrum can be absolutely nor-
malized. Such a treatment allows to compare normalized data directly with the generator
output passed through the WMC (see 4.1.4) and judge about the quasi-free contribution.
For the quasi-free reaction, sample of one million events have been prepared. Half of
the events were generated according to the case where neutron spectator comes from the
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Figure 6.8: Experimental differential distributions (no acceptance corrections) in variables
(see Section 5.1) chosen for description of 3-body reaction dd → 3Henπ0. The plots are
made for “assignment number“ equals to two (see Tab. 5.1).
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Figure 6.9: Experimental differential distributions (no acceptance corrections) in variables
(see Section 5.1) chosen for description of 3-body reaction dd → 3Henπ0. The plots are
made for “assignment number“ equals to three (see Tab. 5.1).
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Figure 6.10: Experimental differential distributions (no acceptance corrections) in vari-
ables (see Section 5.1) chosen for description of 3-body reaction dd → 3Henπ0. The plots
are made for “assignment number“ equals to one (see Tab. 5.1).



6.4 Comparison of Simulation and Experimental Data 71

 / GeV
n

p
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

/d
p 

/ n
b/

G
eV

σd

0

500

1000

1500

2000

2500
data
q.f.

θcos
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 / 
nb

/s
r

Ω
/dσd

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
data
q.f.

Figure 6.11: In the left panel the momentum distribution of the neutron stemming from
dd → 3Henπ0 for data (black line) and quasi-free model (red line) is shown. In the right
panel the scattering angle of pion in center of mass of subsystem 3He−π0 is presented.
The distribution contains only events for which the neutron momentum is smaller then 90
MeV (the cut is indicated by blue dashed line in left panel). The data and model calcula-
tions are not corrected for acceptance.

target and the other half corresponds to the situation where the neutron spectator origi-
nates from the beam. The obtained sample was used as an input for MC simulation. After
a full detector simulation has been conducted, MC sample was analyzed with the same
conditions as used in the analysis of experimental data. Before experimental distributions
were compared to the corresponding MC spectra, the absolute normalization had been ap-
plied. The quasi-free reaction was normalized using the cross section presented in Section
4.1.2. In order to normalize data, the integrated luminosity calculated in section 6.7 was
exploited.

To verify the agreement between the absolutely normalised data and the MC simu-
lations the distribution of the neutron momentum has been checked. In the left panel of
Fig. 6.11 differential cross-section as a function of neutron momentum is shown. One can
notice that in the region of neutron momentum below 90 MeV the data are dominated
by the quasi-free reaction. It is clearly visible when comparing the scattering angle of
the pion in center-of-mass of subsystem 3He− π0. This distribution, obtained after ap-
plying cut (indicated by blue dashed line) on neutron momentum is presented in right
panel of Fig. 6.11. The experimental shape is fairly well reproduced by quasi-free model
with a spectator neutron stemming from the deuteron target. This result allows to fix the
contribution of quasi-free process in the data. As Monte Carlo studies have shown, the
contribution of quasi-free reaction with neutron spectator originating from the deuteron
beam is negligible. This is caused by 3He’s energy due to which most of them are stopped
before first layer of FWC detector, therefore those events can not be reconstructed.
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The second step of comparison of MC simulation and data is the inclusion of model
based on partial wave expansion for three-body reaction. As described in Section 5.4.2
in this approach the total cross section can be expressed by seven terms corresponding to
different partial waves. Those terms in form of matrix elements |T|2 (definition in Section
4.1.3) were used as a weights during the event generation. Based on that seven samples of
106 events have been simulated.

The comparison of the experimental data and Monte Carlo simulations represented in
the Jacobi-coordinates was done by fitting the sum of the simulated distributions to the
experimental distributions. The ideal situation would be to fit the data in four-dimensional
space defined by independent variables M23,cosθq,cosθp and ϕ. However, this solution
is not feasible due to the statistical limitations. If each fitted histogram would be divided
into ten bins then our four-dimensional space would contain 104 cells. The total statis-
tics achieved in the analysis yields to about 170000 events what gives less then twenty
events per cell. Therefore, for fitting the projections of four-dimensional space were used.
Besides M23,cosθq,cosθp,ϕ histograms two additional spectra have been included for fit-
ting: cosθp −cosθq and cosθp +cosθq. For the fit the following χ2 function was defined:

Fmc = A0H0 +(A1 +A2)H1 +(A1 −A2/2)H2 +(A3 +A4)H3

+(A3 −A4/2)H4 +A5H5 +A6H6 +A7H7 (6.6)

χ2 =
nbin

∑
k=1

(Fexp −Fmc)
2

σ2
exp +σ2

mc
(6.7)

The expression for Fmc is transformed formula 5.17 derived from partial wave decom-
position with added term A7H7 corresponding to quasi-free process. In the expression
Eq. 6.6 the fit coefficients appear as A0, ..,A7, while H0, ..,H7 are different MC contribu-
tions as defined in Tab. 4.1. To obtain the fit parameters A0, ..,A7 which would minimize
the deviations of the MC predictions from the experimental points represented by Fexp,
the χ2 minimization method was used. It is noteworthy that during the minimization the
parameter A7 which corresponds to quasi-free contribution was fixed and equal to one.
The results of the fit for three different assignments (see Tab. 5.1) of the particles are
presented in Fig. 6.12 - Fig. 6.14. From the comparison we can conclude that the model
used for Monte Carlo simulations describes the experimental data very well. Of course
the final conclusion can be drawn after the differential cross-section for experimental data
are acceptance corrected. Then the resulting distributions can be compared directly to the
theoretical predictions.

6.5 Reconstruction Efficiency

Before we proceed with the evaluation of corrections for the detector acceptance some
studies related to reconstruction efficiency will be shown. During the estimation of over-
all reconstruction efficiency following factors should be considered: the geometric accep-
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Figure 6.12: The distributions of independent variables calculated according to the quasi-
free and partial wave decomposition of dd → 3Henπ0 reaction. The six spectra compares
the experimental data (red dots) with the results from the MC (black solid line). The
data are absolutely normalised but not corrected for acceptance, similarly as MC results.
The MC curve corresponds to the sum of quasi-free and seven terms from partial wave
decomposition. The plots are made for “assignment number“ equals to two (see Tab. 5.1).
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Figure 6.13: The distributions of independent variables calculated according to the quasi-
free and partial wave decomposition of dd → 3Henπ0 reaction. The six spectra compares
the experimental data (red dots) with the results from the MC (black solid line). The
data are absolutely normalised but not corrected for acceptance, similarly as MC results.
The MC curve corresponds to the sum of quasi-free and seven terms from partial wave
decomposition. The plots are made for “assignment number“ equals to three (see Tab. 5.1).
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Figure 6.14: The distributions of independent variables calculated according to the quasi-
free and partial wave decomposition of dd → 3Henπ0 reaction. The six spectra compares
the experimental data (red dots) with the results from the MC (black solid line). The
data are absolutely normalised but not corrected for acceptance, similarly as MC results.
The MC curve corresponds to the sum of quasi-free and seven terms from partial wave
decomposition. The plots are made for “assignment number“ equals to one (see Tab. 5.1).
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tance, the detection efficiency and the efficiency of algorithms used for events reconstruc-
tion. The influence of those effects on data and MC sample can be tested by comparison
the number of events on different stages of the analysis. If MC simulations reproduce ex-
perimental distributions then any cut applied during the analysis chain should affect data
and MC in comparable way. This is valid under assumption that real data and simulations
are analyzed with exactly the same software program.

To determine purely geometric acceptance for the dd → 3Henπ0 it is sufficient to use
information from event generator after imposing restriction on scattering angles according
to the geometry of detection setup. In Fig. 6.15 the kinematical distribution for helium and
photons are displayed, where the blue lines indicate the acceptance of the WASA detector.
The geometric acceptance calculated under assumption that 3He and two photons are de-
tected in coincidence inside the sensitive ranges of the WASA system is found to be 82%.
In order to evaluate the reconstruction efficiency, the WASA Monte Carlo simulation was
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Figure 6.15: The correlation between the kinetic energy and the scattering angle for 3He
measured in FD detector (left), and photons detected in CD detector (right). The blue lines
indicate the geometrical acceptance of the WASA detector.

used. A sample of 7 ·106 dd → 3Henπ0 events according to the approach based on partial
wave expansion have been generated. Additionally the MC input was supplemented by
106 events for the quasi-free reaction. Both samples have been processed by the MC sim-
ulation and the output was analyzed with the same program as the experimental data. The
reconstruction efficiency was computed as the ratio of events which remain after specific
cuts in the analysis and the total number of generated events. In Table 6.3 the efficiencies
of the selected cuts applied for data and MC simulation are gathered. The notations used
for cut description is following: C1 - number of events after selection of candidates for the
dd → 3Henπ0, C2 - for each event the kinetic energy of 3He has to be reconstructed, the
missing mass of neutron should fulfill condition: 0.925 ≤ mn ≤ 0.950 [GeV], C3 - only
events with cut on probability distribution P(χ2,N)> 0.1 are accepted. As can be seen
from Table 6.3 the largest drop of efficiency is due to the event candidate selection. After
this step data are expected to be background free, what is visible in Fig. 6.3. Therefore,
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Cut MC Phase Space MC Quasi− free MC Sum Data

- 7 ·106 106 8 ·106

C1 1726284 147722 1874006 288135

C2 1323112 121635 1444747 (77%) 221473 (77%)

C3 1049958 97068 1147026 (79%) 169824 (77%)

Table 6.3: The overall reconstruction efficiency for the reaction dd → 3Henπ0. In fourth
and fifth column the efficiencies of the cuts applied for combined Monte Carlo samples
and data are shown. The efficiencies for the subsequent cuts are computed relative to the
previous one.

any further selection criteria (kinematic fit) which aimed mainly for increasing resolu-
tion should affect data and MC simulation in roughly the same way. This is reflected by
the results given in fourth and fifth column of Table 6.3. The fact that cut on probability
distribution of the kinematic fit P(χ2,N)> 0.1 rejects instead of 10% almost 23% can
be attributed to non-Gaussian error distribution. This makes that probability distribution
is not flat but peaked towards the small values of P(χ2,N). The influence of the overall
reconstruction efficiency on the different distributions will be discussed in Section 7.2.

6.6 Acceptance Correction

Before any physics conclusion in the interpretation of the data can be drawn, all experi-
mental distributions have to be corrected for the overall efficiency. If the data covered full
acceptance range than any model would be applicable to perform acceptance and ineffi-
ciencies corrections. In our experiment that was not the case. Therefore, it was crucial to
provide model which describes experimental data as good as possible. This should also
help to minimize effects like finite resolution or limited acceptance which causes that
event migration from the histogram bins they are supposed to populate according to their
original kinematics to the neighboring ones.

In principle, two methods can be applied to perform acceptance corrections. First is
based on multidimensional corrections. In this case acceptance is expressed as a function
of independent variables which describe the studied reaction unambiguously. For 3-body
unpolarized reaction four independent variables can be identified to correct data in a model
independent way. In this approach, each experimental event is weighted by 4-dimensional
function. There were attempts to employ the method for this work, however, due to the



78 Analysis of the dd → 3Henπ0 Reaction

statistics limitations and acceptance holes a multidimensional corrections did not provide
satisfying results. Instead, one-dimensional corrections have been used. The application
of this type of corrections requires model that resembles the data. As can be seen from
Fig. 6.12 - Fig. 6.14 the model presented in Section 5 meets those requirements. The
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Figure 6.16: Overall efficiency corrections for independent variables cosθq,cosθp,M23,ϕ.
The acceptance correction functions were obtained using mixture of quasi-free process
and model based on partial wave expansion for three-body reaction (see Section 6.4).

acceptance correction factors for distributions of interest were prepared in form of one-
dimensional histograms according to following formula:

Feff−acc =
7

∑
k=0

AkRk/
7

∑
k=0

AkHk (6.8)

where Hk denotes the histograms obtained from the generator while Rk refers to the recon-
structed histograms from MC simulations. The number of terms in the sum corresponds
to the number of MC contributions fitted to the data (see Eq. 6.6) with Ak being the fit
coefficients. The acceptance correction distributions derived for exemplary differential
cross-sections are shown in Fig. 6.16.
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6.7 Luminosity Determination

In order to calculate the cross section for dd → 3Henπ0 the luminosity has to be deter-
mined. The relation between luminosity L and the cross section σ can be written as:

L =
Nexp

σ ε
(6.9)

where Nexp is the number of dd → 3Hen events measured in the experiment, ε is the effi-
ciency and acceptance correction function and σ is the cross section of reference reaction
measured at the same beam energy as dd → 3Henπ0.

In this work to determine luminosity the measurement of dd → 3Hen has been per-
formed. The events were collected with the minimum bias trigger (prescaled with a factor
of 100) which requires exactly one hit in first plane of FRH detector. In order to ex-
tract only events of interest a set of selection criteria has been applied. To start with, one
charged track in FD is required, that gives a signal in the FPC and reaches the FRH1 plane.
The latter condition is exploited for comparison of the energy deposited by different par-
ticles. Since 3He stemming from dd → 3Hen are mostly stopped in FRH1 they form
distinct peak which is clearly separated from the protons and deuterons stemming from
break-up reactions. Applying cut on energy deposit ∆EFRH1 ≥ 100MeV we were able to
reduce background contribution to negligible level. It is also noteworthy that events were

 / GeVFTH1E∆

0 0.005 0.01 0.015 0.02 0.025

 / 
G

eV
F

W
C

2
E

∆

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

He n 3→d d 

He) / GeV 3MM(

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 1.02

N

0

1000

2000

3000

4000

5000

Figure 6.17: The correlation between energy deposited in FWC2 versus FTH1 for 3He
stemming from binary reaction (left). In the right panel the 3He missing mass distribution
is shown. Pronounced peak at the mass of the neutron can be observed. A Gaussian fit is
represented by red line.

selected without any requirement on reconstruction of the neutron. The quality of back-
ground suppression is demonstrated in Fig. 6.17. Left panel shows the correlation between
energy loss of 3He in first layer of the Forward Window Counter versus energy loss in the
first layer of the Forward Trigger Hodoscope. Right panel displays helium missing mass
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calculated according to the formula:

MM(3He) =
√

Pb
d +P t

d −P3He (6.10)

The resulting missing mass distribution reveals a background free peak at the mass of the
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Figure 6.18: In left panel dependence dσ/dΩcm(cosθcm) for selected momentum (1.387
GeV/c) is fitted with function 6.12. Fit function is shown in red. The blue bars correspond
to confidence intervals calculated for fitted function. Right panel shows dσ/dΩcm as a
function of momentum. The dependence was fitted by a polynomial of second order. The
value of cross section for our beam momentum (1.2 GeV/c) is displayed in green. The
width of the bar corresponds to the error calculated as confidence interval.

neutron. This spectrum is fitted with a Gaussian function and from the fit parameters the
total number Nexp of detected dd → 3Hen events was extracted. To determine the cross
section we used the data presented in Ref. [84]. Authors measured the dd → tp reaction
for several beam momenta between 1.09 GeV/c - 1.78 GeV/c and dd → 3Hen for beam
momenta in the range of 1.1 GeV/c - 2.5 GeV/c. Moreover, they showed that cross sec-
tions for both channels measured at the same beam momentum (1.65 GeV/c) are almost
identical. Based on that assumption we employed the dd → tp reaction to perform inter-
polation and calculate σ for our beam momentum. We have chosen this channel instead of
dd → 3Hen because it delivers more points for interpolation in the region close to the 1.2
GeV/c. The tritons cover the c.m. angular range between 0 and 65◦ what corresponds to 0◦

- 22◦ interval in the laboratory system. Those boundaries coincide with the region where
we measure 3He from binary reaction. In order to perform interpolation, data for beam
momenta of 1.109 GeV/c, 1.387 GeV/c, 1.493 GeV/c and 1.651 GeV/c were exploited.
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First, the original data are recalculated from dσ/dt to dσ/dΩcm using following formula:

dσ
dΩcm

=
1
π

p∗dp∗He
dσ
dt

(6.11)

where p∗d and p∗He denote the momenta of deuteron and helium in global c.m. system.
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Figure 6.19: Left: Comparison of angular distribution of 3He for MC simulation and data.
The Monte Carlo sample was generated based on parametrized cross section from [84]
data. The MC distribution has been normalized to the number of events in the experimental
spectrum. Right: Parametrized differential cross section of the reaction dd → 3Hen at
pbeam = 1.2 GeV/c. Different colors represent different fit functions.

In the next step for each momentum, dσ/dΩcm is plotted as a function of cosθcm and
fitted (see left panel of Fig. 6.18) with the empirical parametrization [84]:

f(θcm) =
3

∑
i=1

αieβicos θcm (6.12)

Using the αi and βi constants from the fit we can now choose θ1, ...,θn points and calculate
the corresponding values of the function f(θ1), ..., f(θn), the errors σ(f(θ1)), ...,σ(f(θn))
are computed as the confidence intervals for fitted function. After that for each θi the
momentum dependence of the differential cross section was fitted and interpolated to
pbeam = 1.2 GeV/c. Here, we tried to fit either polynomial of second order using three
points for interpolation (see right panel of Fig.6.19) or linear function using two points
in the neighborhood of interpolated value. The results of parametrisation, depending on
which type of function was used, are presented in right panel of Fig. 6.19. The acceptance
corrections were determined using a GEANT-based simulation program for which the
parametrised cross section was used as an input distribution. In left panel of Fig. 6.19 the
output from the simulation is compared to the data. Based on that comparison we select
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the range cosθcm ∈ (0.76− 0.96) and for this interval, the integrated total cross section
was computed using formula:

σ =
∫ 2π

0
dφ

∫ 0.96

0.76

dσ
dΩcm

dcosθcm . (6.13)

As a result the following values for the integrated cross section of dd → 3Hen were
obtained:

σ1 = 49.8±0.33 µb

σ2 = 53.6±0.17 µb (6.14)

where indices ’1’ and ’2’ refer to the type of function (polynomial or linear) used for
fitting distribution presented in right panel of Fig. 6.19. The uncertainties of cross sections
were computed numerically during the integration of distribution shown in left panel of
Fig. 6.19. In this spectrum the information about the error propagation from all steps of
parametrization method is included.

Taking into account Nexp = 174062 of the detected (in the range cosθcm ∈ (0.76−
0.96)) dd → 3Hen events and prescaling factor of 100, we obtained following result for
integrated luminosity:

Lint = (350.1±1.8stat.±24.8sys.)nb−1 (6.15)

In the calculation of Lint for the cross section the value of σ1 has been used. The systematic
error is connected to the difference between cross sections calculated using either linear or
polynomial parametrization. The statistical error is related to the number of detected 3He.
The total uncertainty of the normalisation can be obtained by adding the uncertainties of
Ref. [84] data which is 7% in the absolute normalisation.



7 Results of the analysis

In this chapter the results of the comparison of the collected data with physical models are
discussed. The total cross section as well as possible reaction mechanisms for the reaction
dd → 3Henπ0 investigated at beam momentum of 1.2 GeV/c are presented.

7.1 The Total Cross Section of dd → 3Henπ0

As already mentioned in previous chapter the total cross section for given reaction can be
calculated according to the following relation:

σ =
Nexp

ε Lint
(7.1)

with Lint being the integrated luminosity, ε - the overall efficiency and Nexp the total num-
ber of reconstructed events. After applying all selection criteria described in chapter 6 and
taking into account the symmetrization of events as presented in beginning of section 6.4,
we have obtained Nexp = 331206 events of interest. This information combined with the
value of the luminosity given by Eq. 6.15 and acceptance correction factor of 24.8%, leads
to the following result for the total cross section:

σtot = (3.81±0.01stat.±0.42sys.) µb (7.2)

In the next section the main sources of systematic uncertainties are discussed.

7.2 Systematic Uncertainties

Along with the statistical fluctuations associated with a sample of limited size there are
a number of effects that could lead to systematic uncertainties on the final result of the
total and differential cross section. In this work, one of the dominant source of systematic
error originates from the luminosity evaluation. The error estimated from the luminosity
estimation procedure, was found to be ∼ 7%. Onto this result, additional 7% from the
overall uncertainty in the absolute normalization of data [84] used for luminosity evalua-
tion should be propagated.
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Another important component of systematic error is associated with the cut on the
probability distribution. In the kinematic fit procedure, hypothesis that event can be con-
sidered as dd → 3Henπ0 was confirmed by requiring that the P(χ2|N) distribution is
flat. In Section 6.3.3 the probability distribution was considered flat for probabilities
P(χ2|N)≥ 0.1. In order to estimate how this cut affects the results, different regions of the
probability distribution were tested. In Fig. 7.1 different conditions applied to the P(χ2|N)
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Figure 7.1: The probability distribution obtained from the analysis of the selected data.
The gray histograms represent the data while in red the MC distribution is shown. The
black arrows show the different regions of P(χ2|N) distribution which were used for the
systematic error studies.

distribution are indicated by black arrows. For each marked region, the analysis have been
repeated and the number of reconstructed events in the experiment, overall efficiency and
the total cross section were determined. The corresponding results are gathered in Table
7.1. The cross section values obtained for different selection region were compared to the
nominal value calculated for confidence level ≥ 10%. From the comparison the contri-
bution of uncertainty was estimated to be below 5%. This number corresponds to the cut
≥ 80% on probability distribution for which the deviation of cross section with respect to
the reference value P(χ2|N)≥ 0.1 is maximal.

Systematical errors due to the acceptance corrections were checked by varying the
starting values for the fit parameters A0, ..,A7 in relation 6.6. Subsequently, the acceptance
corrections maps (see Fig. 6.16) for slightly different fit coefficients were compared. The
deviations turned out to be smaller then 0.1%.
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P(χ2|N)≥ X [%] Nrec Overall Eff.[%] σtot [µb]

0.05 355883 26.6 3.82 ± 0.27

0.1 331206 24.8 3.81 ± 0.27

0.2 285876 16.2 3.87 ± 0.28

0.35 225836 16.4 3.91 ± 0.28

0.5 170118 12.3 3.94 ± 0.28

0.65 114410 8 3.96 ± 0.28

0.8 65662 4.68 4.0 ± 0.28

0.1 - 0.8 220214 16.6 3.8 ± 0.27

Table 7.1: The number of reconstructed events, the overall efficiency and the total cross
section calculated for various cuts (see Fig. 7.1) on the probability distribution. The errors
given for cross sections include only uncertainties from luminosity estimation.

Additionally, series of cross-checks regarding cut on energy deposit of 3He have been
performed. This condition was very important because it allowed to completely eliminate
background. Variation of the limits for this cut did not show any significant influence on
the value of the cross section. Taking into account all aforementioned sources of uncer-
tainties the the total systematic error for the cross section was estimated to be 11%.

7.3 Differential Cross Section Distributions

In order to obtain the final differential cross section, the distributions shown in Fig. 6.12 -
Fig. 6.14 have been corrected for the acceptance. These distributions were compared with
a combination of two purely phenomenological models, namely the quasi-free approach
and the model based on partial wave expansion for three-body reaction. As discussed in
6.4 the absolute value of the quasi-free contribution was fixed by use of the parametrized
cross section for the experimental data for pd →3 Heπ0 reaction. The integrated quasi-
free (with neutron being spectator either from target or beam) cross section contributing
to the investigated reaction amount to 2×580 nb, what corresponds to 30% of the total
cross section for dd →3 Henπ0 reaction. The rest of the observed cross section should
be attributed to some other processes in which all entrance channel nucleons and all exit
channel particles are involved. The properties of these other processes were investigated
using partial wave expansion and fitting various contributions to the experimental differ-
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Figure 7.2: The correlation between parameters A0 and A1 obtained from the fit of M23
distribution. The allowed region for those parameters was determined based on assump-
tion that they both should be positive and on the χ2 value of the fit.

ential distributions. Exploiting the fact that reaction dd → 3Henπ0 have been measured
close to the threshold, the partial wave expansion was limited to the processes with total
angular momentum not larger than one in the final state. This implies that six independent
parameters (see Appendix A) should be used for full description of the differential cross
section given by equation 5.17. The fixed value of the quasi-free cross section was used
while amplitudes A0, . . . ,A6 were fitted to the differential distributions with the previously
described set of variables: M23, cosθp, cosθq, ϕ and cosθp ± cosθq.

To obtain all terms Ai occurring in equations 5.17, the differential distributions were
fitted simultaneously using relations 5.23 - 5.27. After the fit has been performed, the
covariance matrix of fit parameters was inspected in order to determine whether the vari-
ables are dependent on one another. As can be seen from Table 7.2 the fit parameters
A0, A1, A3 are almost fully correlated and for the rest parameters the correlation was not
observed. A reason for such correlation is that the shape of M23 spectrum is only the one,
which determines the values of A0, A1 and A3 parameters. We tried to get rid of corre-
lation by splitting the fit into two steps. In first step all differential distributions except
of M23 were fitted simultaneously. In the fit functions 5.24 - 5.27 the linear combination
A0IsS +A1IpS +A3IsP was replaced by one parameter A013. Than only four parameters
A2,A4,A6,A5 and A013 were fixed by the fit, which appeared to be not correlated. The
parameter A3 was then calculated as

A3 =
1

IsP

(
A013 −A0IsS −A1IpS

)
(7.3)

and replaced into equation 5.23. In that way the fit function for M23 contained only two



7.3 Differential Cross Section Distributions 87

A0 A1 A2 A3 A4 A5 A6

A0 1.000 -0.913 0.013 -0.895 0.000 0.000 0.014

A1 -0.913 1.000 0.038 0.648 -0.002 -0.032 -0.056

A2 0.013 0.038 1.000 0.006 -0.046 -0.069 0.074

A3 -0.895 0.648 0.006 1.000 0.007 0.029 0.115

A4 0.000 -0.002 -0.046 0.007 1.000 0.031 -0.137

A5 0.000 -0.032 -0.069 0.029 0.031 1.000 0.009

A6 0.014 -0.056 0.074 0.115 -0.137 0.009 1.000

Table 7.2: The covariance matrix obtained for fit parameters. The fit parameters A0, ..,A6
are defined in Section 5.4.2).

free parameters A0 and A1. Subsequently, the M23 distribution have been fitted requiring
that A0, A1 and A3 are positive, since all these parameters are expressed via a2

α amplitudes
(see equations A.1, A.2 and A.4). Unfortunately, the fit results for A0 and A1 parameters
turn out to be still correlated. Hence, we checked this correlation by fixing parameter A1
and allowing to vary A0 in the fit of M23 distribution. In this procedure it was required that
the χ2 in the fit cannot be larger than 2 ·χ2

min. The χ2
min is the value obtained from the fit for

case where no any condition on fit parameters was imposed. The resulting dependence of
the fixed A1 parameter as a function of A0 parameter are shown in Fig. 7.2. The observed
correlation may be represented by A1 = 16.0 ·1012 −17.6×A0 dependence. The limits of
the correlation presented in Fig. 7.2 were used to compute the coverage of parameter A3.
The final results for all coefficients Ai are gathered in Table 7.3. It is seen that uncorrelated
parameters A2, A4, A5 are determined with the accuracy better than 3% and A6 parameter
have uncertainty of about 10%. For the parameters A0, A1, A3 which are correlated only
their ranges were determined. The parameters A0 and A3 may be varied by factor 3 within
given range, however the uncertainty for their certain values are about few percent. The
value of parameter A1 is badly determined and it can be varied in a very broad range.

The comparison of the experimental differential distributions with quasi-free contri-
bution, fitted partial wave based model and their sum for “assignment number“ equals to
two (see Tab. 5.1) are presented in Fig. 7.3. Similar results were obtained for the compar-
ison of the experimental differential distributions with model prediction for “assignment
number“ equal one and three (see Tab. 5.1). Contributions from quasi-free model, par-
tial wave decomposition and their sum are shown in blue, green and red, respectively. In
the left upper panel of Fig. 7.3 the cosine of angle θp between 3He momentum in the
center-of-mass of subsystem 3He−π0 and beam momentum (z-axis) is displayed. The
shape of the quasi-free contribution and the partial wave model are quite similar and re-
veal the shape of the experimental distribution and their sum very well describes the data.
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Figure 7.3: The experimental distributions (black) corrected for acceptance are compared
to theoretical predictions (red line) based on phenomenological models which were de-
scribed in details in Chapter 5. The plots are made for “assignment number“ equals to two
(see Tab. 5.1). Individual contributions from partial wave decomposition and quasi-free
model are shown in green and blue, respectively.
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Fit results

sS A0 [nb/sr2]

wave (3.23 - 9.27)·1011± 1.12·1010

pS A1 [nb/GeV2sr2] A2 [nb/GeV2sr2]

wave 2.53·109− 1013 4.76·1013± 3.03·1011

Sp A3 [nb/GeV2sr2] A4 [nb/GeV2sr2]

wave (2.72 - 7.80) ·1013 ± 2.11 ·1012 6.07·1013± 1.53·1012

pS+Sp A5 [nb/GeV2sr2] A6 [nb/GeV2sr2]

interference -1.24 ·1014± 1.12·1012 8.74·1012± 9.05·1011

Table 7.3: Amplitudes obtained in the fit of experimental differential cross sections with
the model based on partial wave decomposition. The uncertainties correspond to one
sigma deviations of the fitted parameters (there is no uncertainty for parameter A1 since
it was fixed on certain values). For the parameters A0, A1 and A3 which are correlated in
the fit only their range is given.

While the quasi-free contribution is of about 30% of the observed cross section the ob-
served agreement with the data demonstrate the importance of the p-wave in 3He−π0

subsystem. The right upper panel of Fig. 7.3 shows the cosine of angle θq between neu-
tron momentum in global center-of-mass system and beam momentum. One can notice
that distribution rises steeply at the borders. This shape could not be reproduced only by
p-wave contribution alone. It is seen that for the observed rising of the differential cross
section at small and large θq angles the quasi-free process is responsible. It is most likely
that in the quasi-free contribution higher partial waves are involved what causes the shape
is more steeper then the quadratic dependence on cosθq expected for p-wave contribu-
tion. For θq angles around 90◦ the experimental cross section is completely dominated
by model based on partial wave decomposition. Very good agreement of the model with
the experimental differential cross section as function of cosθq demonstrate the validity
of the applied model and the importance of the neutron p-wave contribution to the reac-
tion mechanism. In the middle row (left panel) of Fig. 7.3 the relative angle ϕ between
planes defined by 3He momentum and beam momentum and by neutron momentum and
beam momentum is presented. The experimental points are fairly well described by sum
of quasi-free and partial wave contributions. As it is seen the observed anisotropy may
arise for quasi-free reaction and when pS and sP interference is present. The contribution
of pS and sP interference dominates the experimental differential cross section. In the
right panel of the middle row the invariant mass of the 3He−π0 subsystem is plotted. It
is seen that quasi-free reaction contributes mainly for low 3He−π0 invariant mass, where
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it accounts for about 50% of the observed cross section. Higher invariant masses are very
well reproduced by the part of the model based on partial wave decomposition. One can
notice, that theoretical curve shows small deviation from experimental distribution. One
of the reason for that can be the assumption that transition amplitudes are proportional
to pL23qL1 . Such dependence is only some approximation and it may happen that this ap-
proach is not strictly fulfilled. Additional effects which are not implemented in the model
as e.g. final state interaction or presence of the resonances in any subsystem of two final
particles may also influence the 3He−π0 invariant mass distribution. In the lower row of
Fig. 7.3 cosθp + cosθq and cosθp − cosθq distributions are presented. They were used for
extraction of the term with the amplitude A5 which does not appear in any of the sin-
gle cross section formulae for variables described before. The A5 term is assigned to the
correlation between θp and θq angles and it is present only for pS and sP interference.



8 Summary and Outlook

In this thesis the reaction dd → 3Henπ0 measured at pd = 1.2 GeV/c beam momentum
have been investigated using the WASA at COSY facility. For the first time the informa-
tions on total cross section and differential distributions of dd → 3Henπ0 reaction were
obtained. The measured total cross section equals to σtot = (3.81±0.02stat.±0.42sys.) µb
was measured with accuracy of about 11%. The various differential distributions exhibit
rich structures indicating important contributions of s- and p- partial waves.

For the comparison of the experimental differential distributions to the theoretical ex-
pectations based on the phenomenological approach the combination of quasi-free model
and partial wave expansion model for three-body reaction were used. The contribution
of the quasi-free model was fixed based on the available data for pd → 3Heπ0 reaction.
The partial wave expansion up to the final state angular momenta not higher than 1 was
used. The amplitudes of this expansion were fitted to the differential experimental dis-
tributions, demonstrating the importance of the p partial waves in the final state. The
overall agreement of the applied model with the experimental differential distributions is
very good. Therefore the present phenomenological model may be considered as a guid-
ance for the microscopic description within Chiral Perturbation Theory, which is under
construction. The microscopic model should include the quasi-free reaction mechanism,
which accounts for 30% of the total cross section and dominates in specific regions of
differential distributions especially for some variables. The large part of the microscopic
model should include processes in which all entrance and exit channel particles are in-
volved. These processes have to proceed to the final states described by s and p partial
waves. The importance of the observed pS and sP interferences should put additional con-
straints to the microscopic model. Depending on the results delivered by the microscopic
model the measurements of the dd → 3Henπ0 reaction may be extended by studies of
polarization observables. The experimental data on differential analysing powers should
allow to separate the contributions of s and p partial waves, what was not possible with
present data.

Apart from providing rich amount of data for description with microscopic model,
the measurement allowed to study the experimental conditions for experimental studies
of the dd → 4Heπ0 reaction which was identified as one of the key issues of the physics
program of the WASA-at-COSY collaboration. In order to study this reaction the knowl-
edge of the cross section for dd → 3Henπ0 is a very valuable information because this is
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the main background channel. Presently obtained cross section for dd → 3Henπ0 reaction
is by factor of 5 ·104 larger than the expected cross section for dd → 4Heπ0 reaction at the
same beam momentum. This indicates the necessity of very strong background reduction
in future investigations of dd → 4Heπ0 reaction. Based on the results and the experiences
gained during the dd → 3Henπ0 beam time the two-week measurement of dd → 4Heπ0

at pd = 1.2 GeV/c beam momentum have been performed. The obtained data are cur-
rently under analysis [85]. Depending on the results, it will be proposed to perform this
measurement with higher statistics and polarized beam. This will allow to extract p-wave
contributions to the Charge Symmetry Breaking amplitude and to fix some parameters of
the Chiral Perturbation Theory terms responsible for this symmetry breaking.



A Appendix

An example of partial wave decomposition for dd → 3Henπ0 reaction assigning neutron as
particle 1, π0 as particle 2 and 3He as particle 3 is presented. The calculations were limited
to final state maximum angular momentum equal 1. The resulting amplitudes presented
in table A.1 may be grouped to sS (amplitudes a1 and a2), sP (amplitudes a3 and a10)
and pS-wave (amplitudes a11 and a18). In this notation first index correspond to particle 1
angular momentum in global center-of-mass system and the second index correspond to
the relative angular momentum of particles 2 and 3 in subsystem 2-3. The si and li are spin
and angular momentum in the entrance channel, s23, L23 and j23 denote spin, angular mo-
mentum and total angular momentum in subsystem 2-3, L1 and j1 are angular momentum
and total angular momentum of particle 1 and J correspond to the total angular momen-
tum of the system in initial and final state. The spherical harmonics were normalized by∫

Yl,m(θ,φ)Y∗
l,m(θ,φ)dΩ = 1.

A0 = a2
1 +3a2

2 (A.1)

A1 = 5a2
12 +5a2

17 +5a2
18 +3a2

14 +3a2
15 +a2

11 +a2
13 +5a2

16 (A.2)

A2 =−15
14

a2
17 +

25
7

a2
18 −

3
2

a2
15 +5a2

16 −
√

70ℜ(a12a∗17)+6ℜ(a12a∗14)−

3
√

2ℜ(a12a∗15)+2
√

2ℜ(a12a∗13)−
12
7

√
5ℜ(a17a∗18)−3

√
10
7

ℜ(a17a∗14)+

3

√
5
7

ℜ(a17a∗15)−4

√
5
7

ℜ(a17a∗13)−12

√
2
7

ℜ(a18a∗14)+
12√

7
ℜ(a18a∗15)+

12√
7

ℜ(a18a∗13)−3
√

2ℜ(a14a∗15)+2
√

10ℜ(a11a∗16) (A.3)

A3 = 5a2
4 +5a2

9 +5a2
10 +3a2

6 +3a2
7 +a2

3 +5a2
8 +a2

5 (A.4)
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amplitude si li s23 L23 j23 L1 j1 J transition

a1 1 1 1
2 0 1

2 0 1
2 0 3P0 →1 S1

1S1
sS

a2 1 1 1
2 0 1

2 0 1
2 1 3P1 →1 S1

1S1

a3 0 0 1
2 1 1

2 0 1
2 0 1S0 →1 S1

1P1

sP

a4 2 0 1
2 1 3

2 0 1
2 2 5S2 →1 S1

1P3

a5 2 2 1
2 1 1

2 0 1
2 0 5D0 →1 S1

1P1

a6 2 2 1
2 1 1

2 0 1
2 1 5D1 →1 S1

1P1

a7 2 2 1
2 1 3

2 0 1
2 1 5D1 →1 S1

1P3

a8 0 2 1
2 1 3

2 0 1
2 2 1D2 →1 S1

1P3

a9 2 2 1
2 1 3

2 0 1
2 2 5D2 →1 S1

1P3

a10 2 4 1
2 1 3

2 0 1
2 2 5G2 →1 S1

1P3

a11 0 0 1
2 0 1

2 1 1
2 0 1S0 →1 P1

1S1

pS

a12 2 0 1
2 0 1

2 1 3
2 2 5S2 →1 P3

1S1

a13 2 2 1
2 0 1

2 1 1
2 0 5D0 →1 P1

1S1

a14 2 2 1
2 0 1

2 1 1
2 1 5D1 →1 P1

1S1

a15 2 2 1
2 0 1

2 1 3
2 1 5D1 →1 P3

1S1

a16 0 2 1
2 0 1

2 1 3
2 2 1D2 →1 P1

1S1

a17 2 2 1
2 0 1

2 1 3
2 2 5D2 →1 P3

1S1

a18 2 4 1
2 0 1

2 1 3
2 2 5G2 →1 P3

1S1

Table A.1: The amplitudes for lowest partial waves for dd → 3Henπ0 reaction.
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A4 =−15
14
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3
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3
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7
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√
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2
√

10ℜ(a16a∗3)+20ℜ(a16a∗8) (A.6)
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A6 = 10ℜ(a12a∗4)+

√
35
2
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θ[deg] p0 p1 p2 p3 p4

0 - 3 0.00986 0.02559 -0.30381 0.81094 -0.69083

3 - 6 0.01811 -0.08890 0.27422 -0.4288 0.26453

6 - 9 0.01888 -0.09442 0.29539 -0.46711 0.29103

9 - 12 0.02050 -0.11273 0.384692 -0.65619 0.43539

12 - 15 0.02107 -0.11375 0.38188 -0.64270 0.42276

15 - 18 0.02171 -0.11453 0.37251 -0.59934 0.37311

Table B.1: In FWC1 detector for kinetic energy parametrization polynomial of fourth

order was used. In the table values of the fit parameters obtained for six angular bins are

presented.

θ[deg] p0 p1 p2 p3 p4

0 - 3 0.02078 -0.123175 0.40310 -0.62650 0.36965

3 - 6 0.02211 -0.14430 0.52482 -0.91648 0.61103

6 - 9 0.02262 -0.14961 0.54760 -0.96025 0.64219

9 - 12 0.02326 -0.15656 0.57956 -1.02582 0.69181

12 - 15 0.02366 -0.15807 0.57895 -1.01374 0.67775

15 - 18 0.02410 -0.16000 0.57981 -0.99792 0.65239

Table B.2: In FWC2 detector for kinetic energy parametrization polynomial of fourth

order was used. In the table values of the fit parameters obtained for six angular bins are

presented.
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θ[deg] p0 p1 p2

0 - 3 -0.29746 3.86830 -11.8258

3 - 6 -0.09547 0.83669 -0.51588

6 - 9 -0.08032 0.60609 0.32362

9 - 12 0.03639 -1.10801 6.54220

12 - 15 0.03260 -1.05575 6.28564

15 - 18 -0.04486 0.07679 2.07313

Table B.3: For particles stopped in FTH1 detector polynomial of second order was used.

In the table values of the fit parameters obtained for six angular bins are presented.

θ[deg] p0 p1 p2

0 - 3 0.00587 0.12212 0.35640

3 - 6 0.00562 0.10549 0.40415

6 - 9 0.00559 0.10823 0.40520

9 - 12 0.00562 0.109261 0.40716

12 - 15 0.00569 0.10921 0.41013

15 - 18 0.00579 0.10900 0.41361

Table B.4: For particles punching through the FTH1 detector power function of the form:

Ekin(Edep) = p0/(Edep −p1)
p2) was used. In the table values of the fit parameters obtained

for six angular bins are presented.
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