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PLANAR NONAUTONOMOUS POLYNOMIAL
EQUATIONS IV. NONHOLOMORPHIC CASE

Paweł Wilczyński

Abstract. We give a few sufficient conditions for the existence of periodic solutions of the
equation ż =

Pn
j=0 aj(t)z

j −
Pr

k=1 ck(t)zk where n > r and aj ’s, ck’s are complex valued.
We prove the existence of one up to two periodic solutions.

Keywords: periodic orbits, polynomial equations.

Mathematics Subject Classification: 34C25, 34C37.

1. INTRODUCTION

The presented paper is a continuation of [21–23]. We study a planar nonautonomous
differential equations of the form

ż = v(t, z) =
n∑
j=0

aj(t)zj −
r∑

k=1

ck(t)zk, (1.1)

where n > r ≥ 1 and aj , ck ∈ C(R,C) are T -periodic.
Equation (1.1) was investigated in many papers, e.g., [9,13,17–20]. In all of them

r > n holds. This allows to obtain the existence of periodic solutions and, in some
cases, even some kind of chaos (for definition see [20]). All the papers use topological
tools – method of isolating segments and isolating chains.

There is another subclass of (1.1) which was extensively studied

ż =
n∑
j=0

aj(t)zj . (1.2)

The study was initiated in [14] and continued in many papers, e.g. [1,2,4,5,7,8,11,12,
15]. One of the most important problems was to examine the structure of the set of
periodic solutions. The second one is the investigation of a centre which is motivated
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by the Poincaré centre-focus problem. The third one is connected with the XVIth
Hilbert problem for degree two equations in the plane which can be reduced to the
problem of finding the maximal number of closed solutions of the equation (1.1) with
n = 3 and special coefficients aj . This leads to investigations of the maximal number
of periodic solutions of (1.1). It is proved in [10] that in the general case there is no
upper bound for this number provided that n ≥ 3.

In some of these papers coefficients were only real. In others the holomorphicity
of the vector field played an important role.

In the presented paper we deal with the case n > r ≥ 1. Since the dominating term
at infinity is of the form zn, it is difficult to use the method of isolating segments.
Moreover, the lack of holomorphicity makes us unable to use such tools like the
Denjoy-Wolff fixed point theorem (see [3]).

We develop the idea from [21–23] and give a few sufficient conditions for the
existence of one or two periodic solutions. We deal with the condition of geometric
type which corresponds to the ones from [22, Subsection 3.1] and [23]. Namely, we try
to include sets aj(R) and ck(R) in some sectors of the complex plane. The point is,
we try to find one sector appropriate for all aj ’s and ck’s.

The method we use may be easily applied to the more general equations

ż = v̂(t, z) =
n∑
j=0

aj(t)|z − bj(t)|ljzj −
r∑

k=1

ck(t)|z − dk(t)|skzk, (1.3)

where lj , sk ∈ R and bj , dk ∈ C(R,C) are T -periodic.
By the existence of a greater number of coefficients aj than in the case of the

Riccati equation (i.e., equation (1.1) with n = 2), it is convenient to consider sectors
where the axis of symmetry is the real axis. Other sectors need a change of variables
of the form w = eiαz. We prove that there exists at least one T -periodic solution in
every such sector. In many cases it is not unique in the sector.

The paper is organised as follows. In Section 2 we give definitions and introduce
notion. In the next section we provide a few sufficient conditions for the existence of
periodic solutions. Section 4 is devoted to the problem of uniqueness of the periodic
solutions inside the sectors.

2. DEFINITIONS

2.1. PROCESSES

Let X be a topological space and Ω ⊂ R×X × R be an open set.
By a local process on X we mean a continuous map ϕ : Ω −→ X such that three

conditions are satisfied:

(i) I(σ,x) = {t ∈ R : (σ, x, t) ∈ Ω} is an open interval containing 0 for every σ ∈ R
and x ∈ X,

(ii) ϕ(σ, ·, 0) = idX for every σ ∈ R,
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(iii) ϕ(σ, x, s + t) = ϕ(σ + s, ϕ(σ, x, s), t) for every x ∈ X, σ ∈ R and s, t ∈ R such
that s ∈ I(σ,x) and t ∈ I(σ+s,ϕ(σ,x,s)).

For abbreviation, we write ϕ(σ,t)(x) instead of ϕ(σ, x, t).
Let M be a smooth manifold and let v : R ×M −→ TM be a time-dependent

vector field. We assume that v is so regular that for every (t0, x0) ∈ R×M the Cauchy
problem

ẋ = v(t, x), (2.1)
x(t0) = x0 (2.2)

has unique solution. Then the equation (2.1) generates a local process ϕ on X by
ϕ(t0,t)(x0) = x(t0, x0, t+ t0), where x(t0, x0, ·) is the solution of the Cauchy problem
(2.1), (2.2).

Let T be a positive number. In the sequel T denotes the period. We assume that
v is T -periodic in t. It follows that the local process ϕ is T -periodic, i.e.,

ϕ(σ+T,t) = ϕ(σ,t) for all σ, t ∈ R,

hence there is a one-to-one correspondence between T -periodic solutions of (2.1) and
fixed points of the Poincaré map ϕ(0,T ).

2.2. TOPOLOGICAL TOOLS

The method presented in the paper comes from the method of isolating segments (for
definition of isolating segment see [18]). In the paper we use only the simplest version
of it so we omit the general definition. We investigate sets of the form W = [0, T ]×B
where B ⊂ C is homeomorphic to the unit disc. We deal with the behaviour of the
vector field (1, v) on the boundary of W . We need only the vector field (1, v) point
outwards W at every point of [0, T ]× ∂B (it is also convenient if it points inwards at
every point). In this situation we use the Brouwer fixed point theorem for the map
ϕ(0,−T )|B (or ϕ(0,T )|B , respectively).

We use the following lemma ([24, Lemma 1]) to strengthen the Brouwer fixed point
theorem (we use it instead of the Denjoy-Wolff fixed point theorem).

Lemma 2.1. Let m ≥ 1 and X be a nonempty convex and closed subset of Rm. Let
f ∈ C(X,X) be such that for every x, y ∈ X, x 6= y, the inequality

|f(x)− f(y)| < |x− y| (2.3)

holds. If in addition the set f(X) is bounded, then there exists exactly one fixed point
x0 ∈ X of f . Moreover, x0 is asymptotically stable and attracting in X.

2.3. BASIC NOTIONS

We make the general assumptions about the equation (1.1) that all its coefficients
aj , ck ∈ C(R,C) are T -periodic.
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Let g : M −→ M and n ∈ N. We denote by gn the n-th iterate of f , and by g−n
the n-th iterate of g−1 (if it exists).

We say that the point z0 is attracting (repelling) for g in the set W ⊂ M if the
equality limn→∞ gn(w) = z0 (limn→∞ g−n(w) = z0) holds for every w ∈W .

We call a T -periodic solution of (2.1) attracting (repelling) in the set W ⊂ M if
the corresponding fixed point of the Poincaré map ϕ(0,T ) is attracting (repelling) in
the set W .

Let −∞ ≤ α < ω ≤ ∞ and s : (α, ω) −→ C be a full solution of (1.1). We call s
forward blowing up (shortly f.b.) or backward blowing up (b.b.) if ω <∞ or α > −∞,
respectively.

We define the sector

S(α, β) = {z ∈ C : α < Arg(z) < β},

where −π ≤ α < β ≤ π. Moreover, for 0 < α ≤ π we define S(α) = S(−α, α)
and Ŝ(α) to be a set symmetric with respect to the origin to sector S(α). Obviously,
0 6∈ S(α, β).

Let us recall that the inner product of two vectors a, b ∈ C is given by the formula
〈a, b〉 = Re(ab) = Re(ab).

In the sequel we write Arg(0) = 0. Let aj , ck ∈ C(R,C) be the coefficients of the
vector field v from equation (1.1).

We define τj ≥ 0 and τ̂j ≥ 0 to be the smallest numbers such that |Arg[aj(t)]| ≤ τj
and |Arg[−aj(t)]| ≤ τ̂j hold for every t ∈ R. We also define ρk ≥ 0 to be the smallest
numbers such that |Arg[ck(t)]| ≤ ρk holds for every t ∈ R.

For a given two functions f, g : C ⊃ Ω −→ C we say that f is dominated by g at
the point p ∈ cl Ω iff f = o(g) at p.

3. EXISTENCE OF PERIODIC SOLUTIONS

In the present section we assume that a1 ∈ C(R,R) holds. It is possible to consider
a1 ∈ C(R,C) (cf. [22, Subsection 3.1], [23, Section 3]), provided the equality

T∫
0

Im[a1(s)] ds = 0 (3.1)

is satisfied. In this case we make in (1.1) (or in (1.3)) the change of variables

w = B(t)z, (3.2)

where

B(t) = e
−i

tR
t0

Im[a1(s)] ds

for some fixed t0 ∈ R and get the equation

ẇ = B(t)a0(t) + Re[a1(t)]w +
n∑
j=2

B1−j(t)aj(t)wj −
r∑

k=1

ck(t)Bk+1wk
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(or

ẇ =B(t)a0(t)|w −B(t)a0(t)|l0 + Re[a1(t)]w +
n∑
j=2

B1−j(t)aj(t)|w −B(t)aj(t)|ljwj

−
r∑

k=1

ck(t)Bk+1|w −B(t)dk(t)|skwk,

provided that l1 = 0, respectively).

3.1. NONZERO FREE TERM

We investigate the case a0 6≡ 0. This allows us to control the vector field in the
neighbourhood of the origin.

We state the main theorem of this section.

Theorem 3.1. Let n ≥ 2, r ≥ 1, a1 ∈ C(R,R) and aj , ck ∈ C(R,C) for
j ∈ {0, 2, 3, . . . , n}, k ∈ {1, 2, . . . , r} be T -periodic. If

n > r, (3.3)
n∑

j=r+1

|aj | > 0 (3.4)

and there exists number

M ≥ max {3, n, r + 2} (3.5)

such that

a0 6≡ 0 and τ̂0 <
π

M − 1
, (3.6){

τj <
j−1
M−1π, for 2 ≤ j ≤ M+1

2 ,

τj ≤ M−j
M−1π, for M+1

2 < j ≤ n,
(3.7){

ρk <
k+1
M−1π, for 1 ≤ k ≤ M−3

2 ,

ρk ≤ M−k−2
M−1 π, for M−3

2 < k ≤ r,
(3.8)

hold, then the equation (1.1) has in the sector S
(

π
M−1

)
:

– at least one T -periodic solution ξ,
– infinitely many forward blowing up solutions.

Moreover, the equation

ż = v1(t, z) =
n∑
j=0

(−1)jaj(t)zj −
r∑

k=1

(−1)kck(t)zk (3.9)
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has in the sector Ŝ
(

π
M−1

)
:

– at least one T -periodic solution χ,
– infinitely many backward blowing up solutions.

If in addition we assume that the equalities

aj ≡ 0, for all odd numbers j ≥ 3, (3.10)
ck ≡ 0, for all odd numbers k ≥ 1 (3.11)

hold, then the equation (1.1) has:

– at least one T -periodic solution χ in the sector Ŝ
(

π
M−1

)
,

– infinitely many backward blowing up solutions in the sector Ŝ
(

π
M−1

)
.

Proof. Our goal is to define a compact set E ⊂ C such that E is homeomorphic to
the closed unit disc and there exists to ∈ R satisfying ϕ−1

(t0,t0+T )(E) ⊂ E. It allows us
to apply the Brouwer fixed point theorem and get the existence of a periodic solution
inside the set E.

We set

0 < ε < min

{
π

M − 1
− τ̂0,

j−1
M−1π − τj
j − 1

,
k+1
M−1π − ρk
k + 1

for 2 ≤ j ≤ n, 1 ≤ k ≤ r

}
and

A = A(ε) =
{
z ∈ C : |Arg(z)| ≤ π

M − 1
− ε
}
.

Let us recall that 0 ∈ A. It is shown in the proof of [23, Theorem 4] that the vector
field

(
1,
∑n
j=0 aj(t)z

j
)

points outwards or is tangent to the set [0, T ] × A at every
point of [0, T ]× ∂A. It comes mainly from (3.7).

Now we show the same for the
(
1,−

∑r
k=1 ck(t)zk

)
. Let us consider the change

of variables w = g(z) = 1
z . We get g

(
S
(

π
M−1 − ε

))
= S

(
π

M−1 − ε
)
. Applying this

change to the term −ck(t)zk we get ck(t)|w|−2kw2+k. But the condition (3.8) for the
vector field ck(t)wk+2 is an analogue of (3.7) for aj(t)zj (the term |w|−2k has no
influence on the direction of ck(t)|w|−2kw2+k on C). So for every t ∈ [0, T ] the vector
field −

∑r
k=1 ck(t)zk points ouward or is tangent to the set A at every point from

∂A. Finally,
(
1,−

∑r
k=1 ck(t)zk

)
points outwards or is tangent to the set [0, T ]×A at

every point of [0, T ]× ∂A.
By (3.6) and (3.4), every solution starting from ∂A stays in ∂A not longer than

T , so there is no periodic solutions in the set ∂A.
Let m = M−1

2 ≥ 1. We make the change of variables in the set {z ∈ C : |Arg(z)| <
π

M−1} \ {0} given by w = f(z) = z−m := e−mLog z. It gives

ẇ = u(t, w) = −m
n∑
j=0

aj(t)w
m−j+1
m +m

r∑
k=1

ck(t)|w|
−2k
m w

m+k+1
m . (3.12)
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Let γ > 0. We set

C(γ) =f (A \ {0}) ∩ {w ∈ C : Re(w) ≥ γ},

Ĉ(γ) =C(γ) ∩ {w ∈ C : Re(w) = γ}.

It is easy to see that C(γ) ⊂ {w ∈ C : |Arg(w)| ≤ π
2 −mε0}.

By (3.4), the dominating part of u on Ĉ(γ) is −m
∑n
j=0 aj(t)w

m−j+1
m , so, since this

part points outwards C(γ) (see proof of [23, Theorem 4]), the vector field (1, u) points
outwards [0, T ]× C(γ) at every point of [0, T ]× Ĉ(γ), provided that γ is sufficiently
small.

Finally, we write E = f−1(C(γ)) ∪ {0}. Since ϕ−1
(0,T )(E) ⊂ E holds, we apply

the Brouwer fixed point theorem and get the existence of periodic solution inside
E ⊂ S

(
π

M−1

)
.

The existence of forward blowing up solutions comes from the fact that,
by (3.4), the dominating part of u on

{
w ∈ C : |Arg(w)| ≤ π

2 −mε0
}
\ C(γ) is

−m
∑n
j=0 aj(t)w

m−j+1
m , so the qualitative behaviour of u is the same as this part

(see proof of [23, Theorem 4]).
In the case (3.9) we investigate the set [0, T ] × (−E). Here ϕ(0,T )(−E) ⊂ (−E)

holds. The calculations are quite similar to the above ones.

Example 3.2. By Theorem 3.1, the equation

ż = −1 + sin(t) + z4 − eiπ3 sin(t)z − z3

has in the sector S
(
π
4

)
at least one 2π-periodic solution and infinitely many f.b.

solutions. Here M = 5, τ̂0 = τ4 = 0 < π
4 , ρ1 = π

4 <
π
2 , ρ3 = 0 ≤ 0.

Remark 3.3. Since the term |z− b(t)| has no influence on the direction of the vector
fields |z−b(t)|zj and |z−b(t)|zk, it is possible to formulate an analogue of Theorem 3.1
for the equation (1.3). We only need to make some additional assumptions:

1. the vector field v̂ is defined and continuous at every point of the set [0, T ] ×
S
(

π
M−1

)
(or [0, T ]× Ŝ

(
π

M−1

)
),

2. every bj , dk ∈ C(R,C) are T -periodic and lj , sk ∈ R,
3. a0(t)|z − b0(t)|l0 is the dominating term of v̂ in the neighbourhood of the origin,
4. there exists a nonempty set J ⊂ {2, 3, . . . , n} such that for every j ∈ J the vector

field
1∑
j=0

aj(t)|z − bj(t)|ljzj −
r∑

k=1

ck(t)|z − dk(t)|skzk,

(or
1∑
j=0

(−1)jaj(t)|z − bj(t)|ljzj −
r∑

k=1

(−1)kck(t)|z − dk(t)|skzk, respectively)

is dominated by the term |z − bj(t)|ljzj in the neighbourhood of infinity and∑
j∈J |aj | > 0 (this condition replaces (3.3) and (3.4)).

5. 1 < j + lj and aj 6≡ 0 for some j ∈ J .
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Proof. Let E be like in the proof of Theorem 3.1. We set

Ê = E ∩ {z ∈ C : Re(z) ≥ ν} (3.13)

for some ν > 0 sufficiently small. By assumption (3), the vector field points outwards
[0, T ]× Ê at every point of the set [0, T ]× Ê ∩ {z ∈ C : Re(z) = ν}. By assumptions
(2)–(5), the vector field points outwards at every other point of [0, T ]× ∂Ê. Now we
apply the Brouwer fixed point theorem to the set Ê.

Example 3.4. By Remark 3.3, the equation

ż = − 2
|z|5

+ ei
π
8 cos(t)z2 + |z|−4z3 − |z|−10z6

has at least one 2π-periodic solution in the sector S
(
π
7

)
. Here M = 8, τ2 = π

8 < π
7 ,

ρ6 = 0 ≤ 0, J = {2, 3}.

Example 3.5. By Remark 3.3, the equation

ż = −|z|−1 + ei
π
3 sin(t)z2

has at least one 2π-periodic solution in each of the sectors S
(
π
2

)
, Ŝ
(
π
2

)
. Here M = 3,

τ̂0 = 0, τ2 = π
3 <

π
2 , J = {2}.

Example 3.6. By Remark 3.3, the equation

ż = −|z − 1|−1 + ei
π
3 sin(t)z2

has at least one 2π-periodic solution in the sector Ŝ
(
π
2

)
. Here M = 3, τ̂0 = 0,

τ2 = π
3 < π

2 , J = {2}. The remark says nothing about periodic solutions inside the
sector S

(
π
2

)
, because the vector field is not defined in the whole set R× S

(
π
2

)
.

Example 3.7. By Remark 3.3, the equation

ż = −|z|−3 − cos(t)|z|3z + ei
π
10 sin(t)z2 + |z|5z4 − z8

has at least one 2π-periodic solution in every of the sectors S
(
π
9

)
, Ŝ
(
π
9

)
. HereM = 10,

a0 ≡ −1, τ̂0 = τ4 = 0, τ2 = π
10 <

π
9 , ρ8 = 0 ≤ 0, J = {4}.

Example 3.8. By Remark 3.3, the equation

ż = −|z + i sin(t)|3 +
∣∣z + eit

∣∣ 12 z5 − eiπ4 cos(t)z2

has in the sector S
(
π
4

)
at least one 2π-periodic solution and infinitely many f.b.

solutions. Here M = 5, a0 ≡ −1, τ̂0 = τ5 = 0, ρ2 = π
4 ≤

π
4 , J = {5}.

Remark 3.9. In Theorem 3.1 and Remark 3.3, all monomials aj(t)zj , ck(t)zk coincide
with respect to the sector in which the symmetry axis is the positive part of the real
axis. If there is coincidence with respect to other sector one can use the change of
variables

w = eiµz. (3.14)
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Example 3.10. The equation

ż = −3i+ eit + iz3 + z4 − z2

does not fulfil the assumptions of Theorem 3.1, because τ3 = π
2 and it should be

τ3 ≤ π
3 for M = 4 and τ3 < 2

M−1π ≤
π
2 for M ≥ 5. But, by the change of variables

w = e−
2πi
3 z, we get the equation

ẇ = (−3i+ eit)e−
2πi
3 + e−

πi
6 w3 + w4 − w2.

Here τ3 = π
6 < π

3 and τ̂0 < π
3 for M = 4. Then the main equation has in the sector

S
(
π
3 , π

)
at least one 2π-periodic solution and infinitely many f.b. ones.

3.2. TRIVIAL FREE TERM

In this section we assume that a0 ≡ 0. The linear term a1(t)z may be the dominating
one in the neighbourhood of the origin. If it satisfies the inequality

T∫
0

a1(t)dt < 0, (3.15)

then it is possible to adapt the method from the proof of Theorem 3.1. In this case
a1z plays similar role to a0.

It is also possible that c1(t)z is dominating in the neighbourhood of the origin,
which is in some sense a dual situation to the one considered in [9].

We state the main theorem of the section.

Theorem 3.11. Let n ≥ 2, r ≥ 1, a1 ∈ C(R,R) and aj , ck ∈ C(R,C) for j ∈
{2, 3, . . . , n}, k ∈ {1, 2, . . . , r} be T -periodic. If the conditions (3.3), (3.4) hold and
there exists M satisfying (3.5), (3.7), (3.8) and at least one of the following conditions
(3.15) or

a1 ≡ 0 and |c1| > 0 (3.16)

is satisfied, then the equation

ż = v(t, z) =
n∑
j=1

aj(t)zj −
r∑

k=1

ck(t)zk (3.17)

has in the sector S
(

π
M−1

)
at least one T -periodic solution and infinitely many f.b.

solutions. Moreover, the equation

ż = v1(t, z) =
n∑
j=1

(−1)jaj(t)zj −
r∑

k=1

(−1)kck(t)zk (3.18)

has in the sector Ŝ
(

π
M−1

)
at least one T -periodic solution and infinitely many b.b.

solutions.
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Proof. Let E and ε be like in the proof of Theorem 3.1. Our goal is to modify the set
E and apply the Brouwer fixed point theorem.

Write m = M−1
2 . We make the change of varibles given by w = h(z) = zm and get

ẇ = u(t, w) = ma1(t)w −mc1(t)|w| 2mw
m−2
m + f(t, w,w), (3.19)

where f is of order at least m+1
m in w and w, so may be omitted when dealing with u

in the neighbourhood of the origin.
Write H = h(E) ⊂ S

(
π
2 −mε

)
. The vector field (1, u) points outwards at every

point of the set [0, T ]× (∂H \ {0}). For µ > 0 small enough we write

H =H(µ) = H ∩ {w ∈ C : Re[w] ≥ µ} ,
Ĥ =H ∩ {w ∈ C : Re[w] = µ} .

Similarly to the proof of Theorem 3.1, we can show that the vector field (1, u) points
outwards at every point of the set [0, T ]×

(
∂H \ Ĥ

)
. To deal with [0, T ]× Ĥ, we fix

w ∈ Ĥ and estimate∣∣∣Arg
[
c1(t)w

m−2
m

]∣∣∣ < π

m
+
(π

2
−mε

) m− 2
m

=

=
π

2
− (m− 2)ε

when 1 ≤ m− 1 and∣∣∣Arg
[
c1(t)w

m−2
m

]∣∣∣ ≤m− 1
m

π +
(π

2
−mε

) 2−m
m

=

=
π

2
− (2−m)ε

when m− 1 < 1, so

Re(ẇ) =ma1(t)Re(w)−m|w| 2mRe
[
c1(t)w

m−2
m

]
<

<

{
ma1(t)Re(w), when c1 ≡ 0,
0, when a1 ≡ 0.

Finally, ψ−1
(0,T )(H) ⊂ H, where ψ is the local process generated by (3.19). Now, by

the Brouwer fixed point theorem we get the existence of T -periodic solution of (3.17)
inside S

(
π

M−1

)
.

Example 3.12. By Theorem 3.11, the equation

ż = −z + z2 + ei
π
3 sin(t)z4 − z

has in the sector S
(
π
6

)
at least one 2π-periodic solution and infinitely many f.b. ones.

Here M = 7 and τ4 = π
3 <

π
2 .
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Remark 3.13. It is possible to formulate the analogue of Theorem 3.11 for the
equation

ż =
n∑

j=p+1

aj(t)zj −
r∑

k=p

ck(t)zk, (3.20)

provided that (3.3), (3.4), (3.5), (3.7), (3.8), 1 ≤ p ≤ r and |cp| > 0 hold.

Proof. We follow the proof of Theorem 3.11 and point only differences out.
The equation (3.20) has now the form

ẇ = u(t, w) = m

n∑
j=p+1

aj(t)w
m−1+j
m −m

r∑
k=p

ck(t)|w| 2km w
m−1−k
m .

The dominating term in the neighbourhood of the origin is mcp(t)|w|
2p
m w

m−1−p
m . It is

enough to show that it points outwards at every point of Ĥ.
We fix w ∈ Ĥ and estimate∣∣∣Arg

[
cp(t)w

m−1−p
m

]∣∣∣ < π

m

p+ 1
2

+
(π

2
−mε

) m− 1− p
2

=

=
π

2
− (m− 1− p)ε

when 1 ≤ p ≤ m− 1 and∣∣∣Arg
[
cp(t)w

m−1−p
m

]∣∣∣ ≤2m− p− 1
2m

π +
(π

2
−mε

) ∣∣∣∣m− 1− p
2

∣∣∣∣ =

=
π

2
− (p−m+ 1)ε

when m− 1 < p ≤ r. Finally,
∣∣∣Arg

[
cp(t)w

m−1−p
m

]∣∣∣ < π
2 .

Example 3.14. By Remark 3.13, the equation

ż = ei
π
3 sin(t)z3 − z2

has in the sector S
(
π
4

)
at least one 2π-periodic solution and infinitely many f.b. ones.

Here M = 5 and τ3 = π
3 <

π
2 .

Example 3.15. By Remark 3.13, the equation

ż = z5 + ei
π
4 sin(t)z7 − z3

has in each of the sectors S
(
π
8

)
, Ŝ
(
π
8

)
at least one 2π-periodic solution. Here M = 9

and τ7 = π
4 .

Remark 3.16. Similarly to Remark 3.3, one can state version of Theorem 3.11 and
Remark 3.13 for the equation

ż =
n∑
j=1

aj(t)|z − bj(t)|ljzj −
r∑

k=1

ck(t)|z − dk(t)|skzk.
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It is possible when the dominating term in the neighbourhood of the origin is of the
form a1(t)|z − b1(t)|l1z (with (3.15)) or ck(t)|z − dk(t)|skzk.

Example 3.17. By Remark 3.16, each of the equations

ż = −|z|z + z3 + ei
π
4 sin(t)z6 − z2,

ż = |z|2z3 + ei
π
4 sin(t)z6 − |z|z2,

ż = − z

|z|2
+ z3 + ei

π
4 sin(t)z6 − z2,

ż = −
∣∣z + eit

∣∣ z + z3 + ei
π
4 sin(t)z6 − z2,

ż = z3 + ei
π
4 sin(t)z6 − z2

|z + 2 + eit|
,

has in the sector S
(
π
19

)
at least one 2π-periodic solution and infinitely many f.b. ones.

Here M = 20 and τ6 = π
4 <

5
19π.

4. UNIQUENESS OF PERIODIC SOLUTION IN SOME SECTORS

It is sometimes possible to find periodic solutions of equation (1.2) which are unique
in sectors of the type S

(
π
α

)
or Ŝ

(
π
α

)
for some α > 0 (see [23]). It is due to the fact

that they are asymptotically stable or asymptotically unstable (and were detected by
the Denjoy–Wolff fixed point theorem).

In the case of equation (1.1) (and (1.3)) we can apply only the Brouwer fixed
theorem which says nothing about the uniqueness of periodic solutions. In fact, equa-
tions which can be investigated by theorems from Section 3 may have more then one
periodic solutions in the considered sectors as shown in the following example.

Example 4.1. By Theorem 3.1, the equation

ż = v(t, z) = −6 + reit + 5z + 5z2 + z4 − 5z3

has in the sector S
(
π
4

)
at least one 2π-periodic solution, provided r ≥ 0 is small

enough (here M = 5).
Taking r = 0 and z ∈ R, we get v(t, z) = (z + 1)(z − 1)(z − 2)(z − 3), so for small

r > 0 we have at least three periodic solutions inside S
(
π
4

)
(and this effect cannot be

removed by taking a thinner sector i.e. sectors of the form S
(
π
α

)
for α > 4).

This example shows, that adding terms to (1.2) of the type ck(t)zk may destroy
uniqueness. On the other hand, equations similar to (1.2) should not lose this property.
It occurs that it holds for the equation

ż = v(t, z) =
n∑
j=0

aj(t)|z − bj(t)|ljzj . (4.1)

Unfortunately, we are able to obtain this only in sectors which are narrower than
in the case of (1.2).
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Now we state the main theorem of the present section. It is in some sense an
improvement of Theorem 3.1.

Theorem 4.2. Let n ≥ 2, a1 ∈ C(R, [0,∞)) and aj ∈ C(R,C) for every j ∈
{0, 2, 3, . . . , n} be T -periodic. If

l0 = 0, (4.2)
lj + j > 1 and aj 6≡ 0 for some j ≥ 1 (4.3)

and there exists number

M ≥ 2n− 1 (4.4)

such that (3.6),

τj <
j − 1
M − 1

π for 2 ≤ j ≤ n, (4.5)

j cos
(
τj +

j − 1
M − 1

π

)
> |lj | for 1 ≤ j ≤ n, (4.6)

bj(R) ⊂ cl Ŝ
(

M − 3
2(M − 1)

π

)
for every j ≥ 1 (4.7)

and at least one of the following conditions

j + lj ≥ 1 for every j ≥ 1, (4.8)
|a0| > 0 (4.9)

hold, then the equation (4.1) has in the sector S
(

π
M−1

)
:

– exactly one T -periodic solution ξ; it is asymptotically unstable and repelling in the
whole sector;

– infinitely many forward blowing up solutions.

Moreover, after replacing Ŝ
(

M−3
2(M−1)π

)
by S

(
M−3

2(M−1)π
)
in (4.7), the equation

ż =
n∑
j=0

(−1)jaj(t)|z − bj(t)|ljzj (4.10)

has in the sector Ŝ
(

π
M−1

)
:

– exactly one T -periodic solution χ; it is asymptotically stable and attracting in the
whole sector;

– infinitely many backward blowing up solutions.

Remark 4.3. We write in (4.7)

Ŝ (0) = {z ∈ C : Re[z] ≤ 0, Im[z] = 0}

and when dealing with (4.10) we write

S (0) = {z ∈ C : Re[z] ≥ 0, Im[z] = 0} .
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Proof of Theorem 4.2. By (4.6) and (4.7), the equation (4.1) in the sector S
(

π
M−1

)
is regular enough to generate a local process ϕ.

By (4.4) and (4.5) we get (3.7). Moreover, by (4.6) we get |lj | < j for all j ≥ 1.
Thus assumptions of Remark 3.3 are satisfied, so there exists at least one T -periodic
solution inside Ê ⊂ S

(
π

M−1

)
, where Ê is given by (3.13). It is enough to show that it

is the only one inside Ê. To do that we use Lemma 2.1.
First of all, we show that Ê is a convex subset of C. The real axis is its line

of symmetry. By the construction of Ê, it is enough to show that the part of its
boundary given by f−1(C(γ)) ∩ {z ∈ C : Im[z] > 0} is a plot of a concave function
y : R ⊃ (µ, ν) 3 x 7→ y(x) ∈ R (here we use notation from the proof of Theorem 3.1).
We parameterise this part of boundary by

s(o) = x(o) + iy(o) = (γ + io)−
1
m , where o ∈

(
− π

M − 1
+ ε, 0

)
.

Thus

d2y

dx2
=

Im [s′′s′]
Re3 [s′]

=
(m+ 1)

(
γ2 + o2

) 1−m
2m

sin3
[
m+1
m arctan o

γ

] < 0

and

dx

do
=

sin
[
m+1
m arctan o

γ

]
m (γ2 + o2)

1+m
2m

> 0,

which proves the convexity of Ê.
Now we show that every solution is locally repelling as long as it stays in Ê, i.e.

for every solution η such that η(t0 + τ) ∈ Ê for every τ ∈ [0, ωÊ ], where 0 ≤ ωÊ ≤ T ,
there exists α > 0 such that for every solution ζ 6= η satisfying |ζ(t) − η(t)| < α for
every t ∈ [t0, t0 + ωÊ ] one gets

d

dt
|ζ(t)− η(t)| > 0 for every t ∈ [t0, t0 + ωÊ ].

Since d
dt |ζ − η|

2 = 2〈ζ − η, ζ ′ − η′〉 and Ê is compact, it is enough to show that

〈ζ − η, ζ ′ − η′〉 > 0 (4.11)

holds. To do this, we estimate the contribution to the inner product of every term
of the vector field v. We fix η and write θ = ζ − η and Aj = aj(t)|ζ − bj(t)|ljζj −
aj(t)|η − bj(t)|ljηj .
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By (4.2), we get 〈ζ − η,A0〉 = 0. Now let j ≥ 1. By (4.7),
∣∣∣ θη ∣∣∣ and ∣∣∣ θ

η−bj

∣∣∣ may be
arbitrarily small provided that η is small enough. Thus

〈ζ − η,Aj〉=Re
[
aj(|ζ − bj |ljζj − |η − bj |ljηj)θ

]
=

=Re

[
aj

(
|η − bj |lj

∣∣∣∣1 +
θ

η − bj

∣∣∣∣lj ζj − |η − bj |ljηj
)
θ

]
=

=Re

[
aj |η − bj |lj

(∣∣∣∣1 +
θ

η − bj

∣∣∣∣lj−1

)
ζjθ

]
+ Re

[
aj |η − bj |lj (ζj − ηj)θ

]
=

=Re

[
aj |η − bj |lj

(
ljRe

[
θ

η − bj

]
+ rlj

(
θ

η − bj

))
ηj
(

1 +
θ

η

)j
θ

]
+

+Re

[
aj |η − bj |lj |θ|2ηj−1

j−1∑
k=0

(
1 +

θ

η

)k]
=

= Bj + Cj ,

where
|1 + z|p = pRe[z] + rp(z)

and |rp(z)| ≤ |z|2Dp(z) for some continuous function Dp : C −→ R. Since |Arg(η)| <
π

M−1 , we get

Cj ≥ cos
[
τj + (j − 1)

π

M − 1
+ Fj

(
θ

η

)]
|aj ||η − bj |lj |θ|2|η|j−1

(
j +Gj

(
θ

η

))
,

where Fj(z) = Arg
[∑j−1

k=0 (1 + z)k
]
and Gj(z) =

∣∣∣∑j−1
k=0 (1 + z)k

∣∣∣ − j. On the other
hand,

|Bj | ≤ |aj ||η − bj |lj |θ|2|η|j−1

∣∣∣∣1 +
θ

η

∣∣∣∣j |lj | ∣∣∣∣ η

η − bj

∣∣∣∣ [1 +
1
|lj |

∣∣∣∣ θ

η − bj

∣∣∣∣Dlj

(
θ

η − bj

)]
is satisfied. Thus

Cj − |Bj | ≥

≥ |aj ||η − bj |lj |θ|2|η|j−1

{
cos
[
τj + (j − 1)

π

M − 1
+ Fj

(
θ

η

)](
j +Gj

(
θ

η

))
−

−
∣∣∣∣1 +

θ

η

∣∣∣∣j |lj | ∣∣∣∣ η

η − bj

∣∣∣∣ [1 +
1
|lj |

∣∣∣∣ θ

η − bj

∣∣∣∣Dlj

(
θ

η − bj

)]}
holds and Cj − |Bj | > 0 for θ small enough provided that

cos
[
τj + (j − 1)

π

M − 1

]
j > |lj |

∣∣∣∣ η

η − bj

∣∣∣∣ .
By (4.7), we get

∣∣∣ η
η−bj

∣∣∣ ≤ 1, so, by (4.6), 〈ζ − η,Aj〉 > 0 holds. Finally, (4.11) holds,
which finishes the proof.
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The following examples are the straightforward applications of Theorem 4.2.

Example 4.4. The equation

ż = −1 + cos(t) +
√
|z|z + [2 + i sin(t)]z2 + z3

has in the sector S
(
π
4

)
exactly one 2π-periodic solution. It is asymptotically unstable

and repelling in the whole sector. Here M = 5, τ2 < π
4 and the condition (4.8) is

satisfied.

Example 4.5. The equation

ż = −1 +
z√
|z|

+ ei
π
8 sin(t)|z|z2 +

z4√
|z|

has in each of the sectors S
(
π
7

)
, Ŝ
(
π
7

)
exactly one 2π-periodic solution, infinitely

many solutions which are heteroclinic to them and infinitely many blowing up solu-
tions. Here M = 8, τ2 = π

8 < π
7 , τ4 = 0, 4 cos

(
3π
7

)
> 1

2 and the condition (4.9) is
satisfied.

The following facts show that the generalisation of Theorem 4.2 is rather hard.

Remark 4.6. It is impossible to use sector S
(

π
M−1

)
instead of S

(
M−3

2(M−1)π
)
in (4.7)

as can be seen in the following example.

Example 4.7. The equation

ż = −900 + reit + |z − 4− i|4 z5

has at least three 2π-periodic solutions inside S
(
π
20

)
. Indeed, for r = 0 and z ∈ R we

get three stationery solutions at 0 < z1 <
28−
√

19
9 < z2 <

28+
√

19
9 < z3. For r > 0

small enough this solutions continue to 2π-periodic ones.

Remark 4.8. It is impossible to allow |lj | > j instead of using condition (4.6) as can
be seen in the following example.

Example 4.9. First of all, let us notice that for every β > 0 there exist γ > 0 and
δ > 0 such that the equation

1 = γ

(
z

|z + 1|1+β
+ δz2

)
has three positive solutions z1, z2 and z3. Fixing such β, γ, δ one gets that the equation

ż = −1 + reit + γ

(
z

|z + 1|1+β
+ δz2

)
has at least three 2π-periodic solutions inside S

(
π
2

)
provided that r > 0 is small

enough.
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Remark 4.10. It is impossible to prove an improvement of Theorem 3.11 as can be
seen in the following example.

Example 4.11. The equation

ż = −z
√
|z|+ 3

z2

|z + 2|
+
(
0.001 + reit

)
z3

has at least three 2π-periodic solutions inside S
(
π
4

)
. Indeed, for r = 0 and z ∈ R we

get three stationary solutions at 0 < z1 < 1 and 4 < z2 < 76 < z3. For r > 0 small
enough this solutions continue to 2π-periodic ones.
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