Using the one-versus-rest strategy with samples balancing to improve pairwise coupling classification

2016
journal article
article
14
cris.lastimport.wos2024-04-09T23:38:50Z
dc.abstract.enThe simplest classification task is to divide a set of objects into two classes, but most of the problems we find in real life applications are multi-class. There are many methods of decomposing such a task into a set of smaller classification problems involving two classes only. Among the methods, pairwise coupling proposed by Hastie and Tibshirani (1998) is one of the best known. Its principle is to separate each pair of classes ignoring the remaining ones. Then all objects are tested against these classifiers and a voting scheme is applied using pairwise class probability estimates in a joint probability estimate for all classes. A closer look at the pairwise strategy shows the problem which impacts the final result. Each binary classifier votes for each object even if it does not belong to one of the two classes which it is trained on. This problem is addressed in our strategy. We propose to use additional classifiers to select the objects which will be considered by the pairwise classifiers. A similar solution was proposed by Moreira and Mayoraz (1998), but they use classifiers which are biased according to imbalance in the number of samples representing classes.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Gierpl
dc.contributor.authorChmielnicki, Wiesław - 160876 pl
dc.contributor.authorStąpor, Katarzynapl
dc.date.accession2016-06-30pl
dc.date.accessioned2016-06-30T07:42:44Z
dc.date.available2016-06-30T07:42:44Z
dc.date.issued2016pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.number1pl
dc.description.physical191-201pl
dc.description.publication0,7pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume26pl
dc.identifier.doi10.1515/amcs-2016-0013pl
dc.identifier.eissn2083-8492pl
dc.identifier.issn1641-876Xpl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/28494
dc.identifier.weblinkhttps://www.amcs.uz.zgora.pl/?action=paper&paper=884pl
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceCC-BY-NC-ND
dc.rights.uri*
dc.share.typeotwarte czasopismo
dc.subject.enpairwise couplingpl
dc.subject.enmulti-class classificationpl
dc.subject.enproblem decompositionpl
dc.subject.ensupport vector machinespl
dc.subtypeArticlepl
dc.titleUsing the one-versus-rest strategy with samples balancing to improve pairwise coupling classificationpl
dc.title.journalInternational Journal of Applied Mathematics and Computer Sciencepl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T23:38:50Z
dc.abstract.enpl
The simplest classification task is to divide a set of objects into two classes, but most of the problems we find in real life applications are multi-class. There are many methods of decomposing such a task into a set of smaller classification problems involving two classes only. Among the methods, pairwise coupling proposed by Hastie and Tibshirani (1998) is one of the best known. Its principle is to separate each pair of classes ignoring the remaining ones. Then all objects are tested against these classifiers and a voting scheme is applied using pairwise class probability estimates in a joint probability estimate for all classes. A closer look at the pairwise strategy shows the problem which impacts the final result. Each binary classifier votes for each object even if it does not belong to one of the two classes which it is trained on. This problem is addressed in our strategy. We propose to use additional classifiers to select the objects which will be considered by the pairwise classifiers. A similar solution was proposed by Moreira and Mayoraz (1998), but they use classifiers which are biased according to imbalance in the number of samples representing classes.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Gier
dc.contributor.authorpl
Chmielnicki, Wiesław - 160876
dc.contributor.authorpl
Stąpor, Katarzyna
dc.date.accessionpl
2016-06-30
dc.date.accessioned
2016-06-30T07:42:44Z
dc.date.available
2016-06-30T07:42:44Z
dc.date.issuedpl
2016
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.numberpl
1
dc.description.physicalpl
191-201
dc.description.publicationpl
0,7
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
26
dc.identifier.doipl
10.1515/amcs-2016-0013
dc.identifier.eissnpl
2083-8492
dc.identifier.issnpl
1641-876X
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/28494
dc.identifier.weblinkpl
https://www.amcs.uz.zgora.pl/?action=paper&paper=884
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY-NC-ND
dc.rights.uri*
dc.share.type
otwarte czasopismo
dc.subject.enpl
pairwise coupling
dc.subject.enpl
multi-class classification
dc.subject.enpl
problem decomposition
dc.subject.enpl
support vector machines
dc.subtypepl
Article
dc.titlepl
Using the one-versus-rest strategy with samples balancing to improve pairwise coupling classification
dc.title.journalpl
International Journal of Applied Mathematics and Computer Science
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
1
Views per month
Views per city
Ashburn
1

No access

No Thumbnail Available