Simple view
Full metadata view
Authors
Statistics
On optimal wavelet bases for classification of melanoma images through ensemble learning
melanoma detection
wavelets
ensembling
This article addresses the medical problem of early detection of the malignant melanoma skin cancer. We present ensemble classification of dermoscopic skin lesion images into two classes: malignant melanoma and dysplastic nevus. The features used for classification are derived from wavelet decomposition coefficients of the image. Our research purpose is to select the best wavelet bases in terms of AUC classification performance of the ensemble. The ensemble learning is optimized by some common quality measures: accuracy, precision, F1-score, FP- rate, speci-ficity, BER and recall. Within the statistics of our machine learning experiments the best model of melanoma uses reverse bi-orthogonal wavelet pair (3.1) and is optimized by FP-rate. This wavelet base performs very well with downscaled image resolutions which matters future small ARMbased devices for computer aided diagnosis of melanoma.
cris.lastimport.wos | 2024-04-09T22:16:34Z | |
dc.abstract.en | This article addresses the medical problem of early detection of the malignant melanoma skin cancer. We present ensemble classification of dermoscopic skin lesion images into two classes: malignant melanoma and dysplastic nevus. The features used for classification are derived from wavelet decomposition coefficients of the image. Our research purpose is to select the best wavelet bases in terms of AUC classification performance of the ensemble. The ensemble learning is optimized by some common quality measures: accuracy, precision, F1-score, FP- rate, speci-ficity, BER and recall. Within the statistics of our machine learning experiments the best model of melanoma uses reverse bi-orthogonal wavelet pair (3.1) and is optimized by FP-rate. This wavelet base performs very well with downscaled image resolutions which matters future small ARMbased devices for computer aided diagnosis of melanoma. | pl |
dc.affiliation | Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych | pl |
dc.conference | Artificial Intelligence and Soft Computing, 15th International Conference, ICAISC 2016 | |
dc.conference.city | Zakopane | |
dc.conference.country | Polska | |
dc.conference.datefinish | 2016-06-16 | |
dc.conference.datestart | 2016-06-12 | |
dc.conference.indexscopus | true | |
dc.conference.indexwos | true | |
dc.contributor.author | Surówka, Grzegorz - 100453 | pl |
dc.contributor.author | Ogorzałek, Maciej - 102456 | pl |
dc.contributor.editor | Rutkowski, Leszek | pl |
dc.contributor.editor | Korytkowski, Marcin | pl |
dc.contributor.editor | Scherer, Rafał | pl |
dc.contributor.editor | Tadeusiewicz, Ryszard | pl |
dc.contributor.editor | Zadeh, Lotfi A. | pl |
dc.contributor.editor | Zurada, Jacek M. | pl |
dc.date.accessioned | 2016-06-29T10:44:08Z | |
dc.date.available | 2016-06-29T10:44:08Z | |
dc.date.issued | 2016 | pl |
dc.description.conftype | international | pl |
dc.description.physical | 655-666 | pl |
dc.description.publication | 0,7 | pl |
dc.description.series | Lecture Notes in Computer Science. Lecture Notes in Artificial Intelligence | |
dc.description.series | Lecture Notes in Computer Science | |
dc.description.seriesnumber | 9692 | |
dc.description.volume | 1 | pl |
dc.identifier.doi | 10.1007/978-3-319-39378-0_56 | pl |
dc.identifier.eisbn | 978-3-319-39378-0 | pl |
dc.identifier.isbn | 978-3-319-39377-3 | pl |
dc.identifier.serieseissn | 1611-3349 | |
dc.identifier.seriesissn | 0302-9743 | |
dc.identifier.uri | http://ruj.uj.edu.pl/xmlui/handle/item/28454 | |
dc.language | eng | pl |
dc.language.container | eng | pl |
dc.pubinfo | [s.l.] : Springer | pl |
dc.rights | Dodaję tylko opis bibliograficzny | * |
dc.rights.licence | Bez licencji otwartego dostępu | |
dc.rights.uri | * | |
dc.subject.en | melanoma detection | pl |
dc.subject.en | wavelets | pl |
dc.subject.en | ensembling | pl |
dc.subtype | ConferenceProceedings | pl |
dc.title | On optimal wavelet bases for classification of melanoma images through ensemble learning | pl |
dc.title.container | Artificial intelligence and soft computing : 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12-16, 2016 : proceedings | pl |
dc.type | BookSection | pl |
dspace.entity.type | Publication |