On optimal wavelet bases for classification of melanoma images through ensemble learning

2016
book section
conference proceedings
6
cris.lastimport.wos2024-04-09T22:16:34Z
dc.abstract.enThis article addresses the medical problem of early detection of the malignant melanoma skin cancer. We present ensemble classification of dermoscopic skin lesion images into two classes: malignant melanoma and dysplastic nevus. The features used for classification are derived from wavelet decomposition coefficients of the image. Our research purpose is to select the best wavelet bases in terms of AUC classification performance of the ensemble. The ensemble learning is optimized by some common quality measures: accuracy, precision, F1-score, FP- rate, speci-ficity, BER and recall. Within the statistics of our machine learning experiments the best model of melanoma uses reverse bi-orthogonal wavelet pair (3.1) and is optimized by FP-rate. This wavelet base performs very well with downscaled image resolutions which matters future small ARMbased devices for computer aided diagnosis of melanoma.pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznychpl
dc.conferenceArtificial Intelligence and Soft Computing, 15th International Conference, ICAISC 2016
dc.conference.cityZakopane
dc.conference.countryPolska
dc.conference.datefinish2016-06-16
dc.conference.datestart2016-06-12
dc.conference.indexscopustrue
dc.conference.indexwostrue
dc.contributor.authorSurówka, Grzegorz - 100453 pl
dc.contributor.authorOgorzałek, Maciej - 102456 pl
dc.contributor.editorRutkowski, Leszekpl
dc.contributor.editorKorytkowski, Marcinpl
dc.contributor.editorScherer, Rafałpl
dc.contributor.editorTadeusiewicz, Ryszardpl
dc.contributor.editorZadeh, Lotfi A.pl
dc.contributor.editorZurada, Jacek M.pl
dc.date.accessioned2016-06-29T10:44:08Z
dc.date.available2016-06-29T10:44:08Z
dc.date.issued2016pl
dc.description.conftypeinternationalpl
dc.description.physical655-666pl
dc.description.publication0,7pl
dc.description.seriesLecture Notes in Computer Science. Lecture Notes in Artificial Intelligence
dc.description.seriesLecture Notes in Computer Science
dc.description.seriesnumber9692
dc.description.volume1pl
dc.identifier.doi10.1007/978-3-319-39378-0_56pl
dc.identifier.eisbn978-3-319-39378-0pl
dc.identifier.isbn978-3-319-39377-3pl
dc.identifier.serieseissn1611-3349
dc.identifier.seriesissn0302-9743
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/28454
dc.languageengpl
dc.language.containerengpl
dc.pubinfo[s.l.] : Springerpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceBez licencji otwartego dostępu
dc.rights.uri*
dc.subject.enmelanoma detectionpl
dc.subject.enwaveletspl
dc.subject.enensemblingpl
dc.subtypeConferenceProceedingspl
dc.titleOn optimal wavelet bases for classification of melanoma images through ensemble learningpl
dc.title.containerArtificial intelligence and soft computing : 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12-16, 2016 : proceedingspl
dc.typeBookSectionpl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-09T22:16:34Z
dc.abstract.enpl
This article addresses the medical problem of early detection of the malignant melanoma skin cancer. We present ensemble classification of dermoscopic skin lesion images into two classes: malignant melanoma and dysplastic nevus. The features used for classification are derived from wavelet decomposition coefficients of the image. Our research purpose is to select the best wavelet bases in terms of AUC classification performance of the ensemble. The ensemble learning is optimized by some common quality measures: accuracy, precision, F1-score, FP- rate, speci-ficity, BER and recall. Within the statistics of our machine learning experiments the best model of melanoma uses reverse bi-orthogonal wavelet pair (3.1) and is optimized by FP-rate. This wavelet base performs very well with downscaled image resolutions which matters future small ARMbased devices for computer aided diagnosis of melanoma.
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Zakład Technologii Informatycznych
dc.conference
Artificial Intelligence and Soft Computing, 15th International Conference, ICAISC 2016
dc.conference.city
Zakopane
dc.conference.country
Polska
dc.conference.datefinish
2016-06-16
dc.conference.datestart
2016-06-12
dc.conference.indexscopus
true
dc.conference.indexwos
true
dc.contributor.authorpl
Surówka, Grzegorz - 100453
dc.contributor.authorpl
Ogorzałek, Maciej - 102456
dc.contributor.editorpl
Rutkowski, Leszek
dc.contributor.editorpl
Korytkowski, Marcin
dc.contributor.editorpl
Scherer, Rafał
dc.contributor.editorpl
Tadeusiewicz, Ryszard
dc.contributor.editorpl
Zadeh, Lotfi A.
dc.contributor.editorpl
Zurada, Jacek M.
dc.date.accessioned
2016-06-29T10:44:08Z
dc.date.available
2016-06-29T10:44:08Z
dc.date.issuedpl
2016
dc.description.conftypepl
international
dc.description.physicalpl
655-666
dc.description.publicationpl
0,7
dc.description.series
Lecture Notes in Computer Science. Lecture Notes in Artificial Intelligence
dc.description.series
Lecture Notes in Computer Science
dc.description.seriesnumber
9692
dc.description.volumepl
1
dc.identifier.doipl
10.1007/978-3-319-39378-0_56
dc.identifier.eisbnpl
978-3-319-39378-0
dc.identifier.isbnpl
978-3-319-39377-3
dc.identifier.serieseissn
1611-3349
dc.identifier.seriesissn
0302-9743
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/28454
dc.languagepl
eng
dc.language.containerpl
eng
dc.pubinfopl
[s.l.] : Springer
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
Bez licencji otwartego dostępu
dc.rights.uri*
dc.subject.enpl
melanoma detection
dc.subject.enpl
wavelets
dc.subject.enpl
ensembling
dc.subtypepl
ConferenceProceedings
dc.titlepl
On optimal wavelet bases for classification of melanoma images through ensemble learning
dc.title.containerpl
Artificial intelligence and soft computing : 15th International Conference, ICAISC 2016, Zakopane, Poland, June 12-16, 2016 : proceedings
dc.typepl
BookSection
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
1
Views per month
Views per city
Ashburn
1

No access

No Thumbnail Available