An asymmetric noncommutative torus

2015
journal article
article
35
cris.lastimport.wos2024-04-10T02:17:24Z
dc.abstract.enWe introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).pl
dc.affiliationWydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiegopl
dc.contributor.authorDąbrowski, Ludwikpl
dc.contributor.authorSitarz, Andrzej - 100147 pl
dc.date.accessioned2015-12-09T11:49:55Z
dc.date.available2015-12-09T11:49:55Z
dc.date.issued2015pl
dc.date.openaccess0
dc.description.accesstimew momencie opublikowania
dc.description.publication0,7pl
dc.description.versionostateczna wersja wydawcy
dc.description.volume11pl
dc.identifier.articleid075pl
dc.identifier.doi10.3842/SIGMA.2015.075pl
dc.identifier.eissn1815-0659pl
dc.identifier.urihttp://ruj.uj.edu.pl/xmlui/handle/item/17939
dc.languageengpl
dc.language.containerengpl
dc.rightsDodaję tylko opis bibliograficzny*
dc.rights.licenceCC-BY-NC-SA
dc.rights.uri*
dc.share.typeotwarte czasopismo
dc.subject.ennoncommutative geometrypl
dc.subject.enGauss-Bonnetpl
dc.subject.enspectral triplepl
dc.subtypeArticlepl
dc.titleAn asymmetric noncommutative toruspl
dc.title.journalSymmetry, Integrability and Geometry. Methods and Applicationspl
dc.typeJournalArticlepl
dspace.entity.typePublication
cris.lastimport.wos
2024-04-10T02:17:24Z
dc.abstract.enpl
We introduce a family of spectral triples that describe the curved noncommutative two-torus. The relevant family of new Dirac operators is given by rescaling one of two terms in the flat Dirac operator. We compute the dressed scalar curvature and show that the Gauss-Bonnet theorem holds (which is not covered by the general result of Connes and Moscovici).
dc.affiliationpl
Wydział Fizyki, Astronomii i Informatyki Stosowanej : Instytut Fizyki im. Mariana Smoluchowskiego
dc.contributor.authorpl
Dąbrowski, Ludwik
dc.contributor.authorpl
Sitarz, Andrzej - 100147
dc.date.accessioned
2015-12-09T11:49:55Z
dc.date.available
2015-12-09T11:49:55Z
dc.date.issuedpl
2015
dc.date.openaccess
0
dc.description.accesstime
w momencie opublikowania
dc.description.publicationpl
0,7
dc.description.version
ostateczna wersja wydawcy
dc.description.volumepl
11
dc.identifier.articleidpl
075
dc.identifier.doipl
10.3842/SIGMA.2015.075
dc.identifier.eissnpl
1815-0659
dc.identifier.uri
http://ruj.uj.edu.pl/xmlui/handle/item/17939
dc.languagepl
eng
dc.language.containerpl
eng
dc.rights*
Dodaję tylko opis bibliograficzny
dc.rights.licence
CC-BY-NC-SA
dc.rights.uri*
dc.share.type
otwarte czasopismo
dc.subject.enpl
noncommutative geometry
dc.subject.enpl
Gauss-Bonnet
dc.subject.enpl
spectral triple
dc.subtypepl
Article
dc.titlepl
An asymmetric noncommutative torus
dc.title.journalpl
Symmetry, Integrability and Geometry. Methods and Applications
dc.typepl
JournalArticle
dspace.entity.type
Publication
Affiliations

* The migration of download and view statistics prior to the date of April 8, 2024 is in progress.

Views
7
Views per month
Views per city
Wroclaw
2
Ashburn
1
Des Moines
1
Dublin
1
Shanghai
1

No access

No Thumbnail Available