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Abstract. We present a new subspace clustering method called SuMC (Sub-

space Memory Clustering), which allows to efficiently divide a dataset D ⊂ RN

into k ∈ N pairwise disjoint clusters of possibly different dimensions. Since our

approach is based on the memory compression, we do not need to explicitly

specify dimensions of groups: in fact we only need to specify the mean number

of scalars which is used to describe a data-point. In the case of one cluster our

method reduces to a classical Karhunen-Loeve (PCA) transform. We test our

method on some typical data from UCI repository and on data coming from

real-life experiments.
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1. Introduction

In many data engineering problems we deal with high-dimensional data, which causes
challenges to existing clustering methods, especially those based on density approach.
Therefore, there is a need to simultaneously cluster the data into multiple subspaces
and find low-dimensional subspaces optimally fitting each group. This problem,
known as subspace clustering, or projection clustering [1], has found numerous appli-
cations in computer vision (e.g., image segmentation, motion segmentation, face clus-
tering), image processing (e.g., image representation and compression), and systems
theory (e.g., hybrid system identification). In general, subspace clustering algorithms

1The paper was supported by the National Centre for Research and Development under Grant
no. WND-DEM-1-153/01.
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can be divided into two main classes: those who construct axis parallel subspaces
(this approach is especially useful for highly dimensional data), and those who are
able to build arbitrary subspaces.

The two basic types of axis-parallel clustering methods are distinguished by the
way they proceed. The bottom-up search method takes advantage of the downward
closure property of density to reduce the searched space. Algorithms first create
a histogram for each dimension, and by their analysis construct higher dimensional
clusters. CLIQUE [2] was one of the first algorithms which combines density and
grid based clustering. Similar approach was presented in ENCLUS [3], MAFIA [4],
CLTree [5], DOC [6]. On the other hand, the top-down subspace clustering approach
starts by finding an initial approximation of the clusters in the full feature space
with equally weighted dimensions. Next each dimension is assigned a weight for each
cluster. The updated weights are then used in the following iteration to regenerate
clusters. PROCLUS [7] was the first top-down subspace clustering algorithm. Similar
to CLARANS [8] and FINDIT [9], PROCLUS samples the data, then selects a set
of k-medoids and iteratively improves the clustering. These algorithms are not able
to capture local data correlations and find clusters of correlated objects since the
principal axes of correlated data are arbitrarily oriented.

(a) All points of a given dataset
together with its clusters.

(b) Projections onto the sub-
spaces.

Figure 1. Dividing a dataset into two zero-dimensional (points) and three one-
dimensional subspaces (lines).

The second type of subspace clustering algorithms concentrate on finding sub-
spaces in arbitrary position in space. The first implementation of this approach was
given by ORCLUS [10] using ideas similar to the axis-parallel approach PROCLUS. In
[11] the algorithm 4C, a combination of DBSCAN [12] and PCA, is presented to find
correlation clusters. COPAC [13] is based on similar ideas as 4C but deals with some
problems like meaningless similarity matrices due to sparse ε-neighborhoods, instead
taking a fixed number k of neighbors. Similar idea is present in algorithms based on
classical k-means approach [14,15]. By considering different objective functions which
take into account the inherent trade-off between the dimension of a subspace and the
induced clustering error we obtain clusters in arbitrary subspaces.
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In this paper we present a novel projection clustering method which is based
on information theory. More precisely, our goal is to divide data into subspaces of
possibly various dimensions, in such a way to minimize the mean squared error, while
keeping fixed the compression level (the number of used scalars). This approach
allows us to efficiently divide a data into fixed k ∈ N pairwise disjoint clusters (which
are described in an optimal way by subspaces) and to determinate their dimensions,
see Figure 1, where the data is divided into two zero-dimensional (points) and three
one-dimensional affine subspaces (lines).

The main advantage of the presented method is that it automatically finds the
optimal dimensions of the clusters. However, we need to specify the number of clusters
k and the compression level p.

2. Theory: cost function and the clustering algorithm

In this section we describe the clustering method. Our goal is to divide dataset
D ⊂ RN , N ∈ N into k ∈ N pairwise disjoint clusters D1, . . . , Dk (D = D1 ∪ . . .∪Dk)
such that each cluster is well represented by an affine subspace.

Let us consider a situation of one group D ⊂ RN and an affine space V ⊂ RN of di-
mension n ≤ N . We replace each point x ∈ D by its projection onto V . Consequently
the total squared-error in cluster is given by

E[D;V ] :=
∑

x∈D
dist(x, V )2,

where dist(x, V ) describe distance between point and its orthogonal projection on
subspace V . Observe, that we need |D| ·n scalars to describe a point after projection,
and |D| ·N for original data. In such a case the compression level of memory (mea-
sured by the number of used scalars) which was used for representing data in lower
dimensional subspaces, is defined by

p :=
|D|n
|D|N =

n

N
∈ [0, 1],

where |D| is the cardinality of the dataset D. There appears a natural question
how to construct the subspace V which minimizes the total squared-error with fixed
level of allowed memory. The answer is given by the PCA algorithm [16, 17]. The
optimal subspace is given by V = mD + span(v1, . . . , vn), where mD is a mean of D
and v1, . . . , vn are the n consecutive eigenvectors of the covariance matrix covD of
D (ordered decreasingly with respect to eigenvalues). This allows us to define the
minimal projection error

E[D,n] := E[D,mD + span(v1, . . . , vn)]. (1)

It is possible to calculate the value of E[D,n] by analyzing only the eigenvalues of
covariance matrix.
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Proposition 1 [17, Propetries A1–A5], Let D ⊂ RN be a given dataset, where
N ∈ N, and let λ1, . . . , λN be the decreasingly ordered eigenvalues corresponding to
eigenvectors v1, . . . , vN of covariance matrix covD. Then the squared error is given by

E[D,n] = |D| ·
∑

i∈N, i>n
λi. (2)

The n in the equation (2) denotes that we use n ∈ N parameters (scalars) in the
compression of every element of the group D. However, in the search for the solution
of the optimization problem it is better to allow the use of non-integer n ∈ R. That
is why we extend E[D,n] in an affine way for arbitrary n ∈ R and n > 0:

E[D,n] := (bnc+ 1− n)E[D, bnc] + (n− bnc)E[D, bnc+ 1], (3)

where E[D, ·] for natural numbers is defined in (1), and extended by E[D,n] := 0 for
n ≥ N . This allows us to consider non-integer dimensions for subspaces.

Now we are ready to formalize our main optimization problem.

Optimization problem Let dataset D ⊂ RN , the number of cluster k and the
compression level p ∈ [0, 1] be given. Our goal is to find the splitting of D into k-
clusters D1, . . . , Dk and numbers2 n1, . . . , nk, which minimize the total squared error

E[D1, n1; . . . ;Dk, nk] := E[D1, n1] + . . .+ E[Dk, nk],

under the condition
n1|D1|+ . . .+ nk|Dk|

N |D| ≤ p. (4)

Observe that the left hand side of (4) denotes the proportion of the total number of
scalars used for storage orthogonal projection of points from clusters D1, . . . , Dk on
subspaces of dimension n1, . . . , nk with respect to the total initial number of scalars
needed to describe the dataset (in other words this can be seen as the compression
level).

Let us proceed by the description of the procedure we use to find an approximate
solution to our Optimization Problem. Suppose, for simplicity, that we want to divide
the data D into k = 2 clusters with fixed compression level p. This means that the
total amount of scalars we are able to use approximately equals M = p · |D| ·N.

First, our algorithm assigns each point of D randomly to one of two clusters
D1 and D2. For each of those clusters we reserve the amount of memory which is
proportional to their number of elements M1 = p · |D1| ·N and M2 = p · |D2| ·N.

In other words, we initially use the same amount of memory to the compression
of a point in both clusters (or equivalently, that we approximate both clusters with
subspaces of equal dimensions). In the next step, we shift the memory from one
cluster to another, if it increases the compression level (decreases the squared error).
In the last step we proceed through all elements of the dataset D and verify whether

2 They correspond to the dimensions of the subspaces.
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we obtain smaller error by changing the belonging of x. We repeat above steps until
we do not switch the position of any point from our dataset. In the case k > 2 we
proceed by the following steps:

1. We assign each point ofD randomly to one of k clustersD1, . . . , Dk and calculate
the amount of memory Mi = p · |Di| · N for i = 1, . . . , k, which are related to
clusters.

2. We proceed through all elements of the dataset D.

(a) We create clones D̃1, . . . , D̃k of groups D1, . . . , Dk. We switch position3 of
element x ∈ D from the cluster where belongs x ∈ D̃i to another clusters.
We calculate error of E[D̃i, ñi]+E[D̃j , ñj ] for all j 6= i, j = 1, . . . , k and we
choose minimum from these. Assume that minimum is realized for j = t.

(b) We compare E[Di, ni] + E[Dt, nt] from this minimum and if we obtain
smaller error by changing the belonging of x than we switch x ∈ Di from
Di to Dt.

3. We repeat Step 2 until we do not switch the position of any point from our
dataset.

3. Experiments

In this section we present comparison of our algorithm, which we denote by SuMC
(Subspace Memory Clustering), with classical approach given by ORCLUS. Both of
these methods detect clusters in arbitrarily-oriented subspaces and are able to find
dimension of each component. Moreover, these algorithms require similar parameters:
number of clusters and their joint dimension (ORCLUS) or total number of parameters
(SuMC). The difference between these methods is that ORCLUS divides a dataset
into given number of clusters of the same dimensions, while our method can switch
the memory between clusters, which result in the automatic discovery of the optimal
dimension of each cluster. It should be highlighted that our method needs parameter
p ∈ [0, 1] directly associated with the dimensions of clusters.

Let us start with synthetic datasets, which we are randomly generated on the
spaces [0, 1]dim, where dim denotes dimension of a space. First, we create two datasets
X1, X2 ⊂ R3, which contain two 1-dimensional (each have 100 points) and two 2–
dimensional (each have 200 points) clusters. Note that we need 1 ·100 ·2+2 ·200 ·2 =
1000 scalars to remember each of these datasets. In the Table 1 we show results of
comparison two methods: SuMC and ORCLUS. Both algorithms give comparably
good results.

Our method allows to detect the optimal dimensions of the clusters. If we take
as a number of clusters 4 and p = 0.63 in SuMC algorithm for dataset X1 then we

3 Note that if we change the position of an element from one cluster to other cluster then we also
change memories of these clusters.
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Table 1. Comparison of SuMC and ORCLUS algorithms on synthetic datasets
X1, X2 ⊂ R3, which have two 1-dimensional and two 2-dimensional subspaces (we
divide on four clusters).

Dataset X1X1X1 X2X2X2

Dimensions of clusters 1 2 1 2

Compression level for SuMC (4) 0.33 0.66 0.33 0.66

Rand index
SuMC 0.8728381 1 0.7586923 1

ORCLUS 1 0.7374569 0.9950417 0.8364218

Figure 2. Results of algorithm SuMC for datasets X1 and X2 respectively.

obtain the original clusters, see Figure 2. Moreover, dimensions of these clusters equal
1, 1, 2, 2.04. Similarly, if we put p = 0.56 for dataset X2 then we obtain 100% compat-
ibility with original clusters and dimensions of this clusters are given by 1, 1, 2, 2.67,
see Figure 2.

On Figure 3, we show how the mean square error varies depending on the com-
pression level p (since for each p we made only few random starts in our experiments,
we are not able to find the global minimum, which results in the local increases in the
error level with the decrease of compression level). As one can see, the mean square
error is stabilized in the range from 0.5 to 1.

We have also generated datasets X3 ⊂ R4 and X4 ⊂ R20 in the same way as
datasets X1, X2. The dataset X3 contains one 1-dimensional (100 points), one 2-
dimensional (each have 200 points) and one 3-dimensional (300 points) subspaces. In
Table 2 we present results of comparison between SuMC and ORCLUS.

Table 2. Comparison of SuMC and ORCLUS algorithms on synthetic dataset X3 ⊂
R4 (we divide on three clusters).

Dimensions of clusters 1 2 3

Compression level for SuMC 0.25 0.50 0.75

Rand index
SuMC 1 0.6364886 1

ORCLUS 0.9149972 0.7886867 0.9399221
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Figure 3. Graphs of the error function depending on the compression level.

The dataset X4 ⊂ R20 contains 2-dimensional (100 points), 6-dimensional (200
points), 10-dimensional (400 points), 15-dimensional (600 points) subspaces. In the
Table 3 we present results of comparison between SuMC and ORCLUS.

Table 3. Comparison of SuMC and ORCLUS algorithms on synthetic dataset X4 ⊂
R20 (we divide on four clusters).

Dimensions of clusters 2 6 10 15

Compression level for SuMC 0.1 0.3 0.5 0.75

Rand index
SuMC 0.6368911 0.8643075 0.9988204 0.9968982

ORCLUS 0.8447646 0.9616083 0.8680002 0.8123634

As one can see from above examples, our method compared to ORCLUS gives
better results when we search for clusters near the highest dimensional subspace
included in dataset. In the case when we want to find higher-dimensional subspaces
than their are in fact present in the data, then our method can assign any point to
any cluster because we have more memory than we in fact need.

In the next example we compare methods on datasets form the uci-repository
http://archive.ics.uci.edu/ml. Let us consider three datasets from this repository:
glass, wine and yeast, see Table 4.

From the above table we can conclude that our method gives in most cases better
results than ORCLUS method.

At the end of this section we present a possible application of subspace clustering
for possible preprocessing of turbine wind states. The experiment was performed
using 4-D data from one of vertical axis wind turbine prototypes. The data covered
the period from 18.04.2014 till 21.04.2014 and were recorded for every second by
the on-line register system. The dataset contains the basic values that define the
operational state of the turbine: wind speed, rotational speed of the rotor and the
AC/DC power generated by the turbine. The dataset included 214306 measurements.
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Table 4. Comparison of SuMC method with ORCLUS method on several datasets:
glass (divide on 7 clusters), wine (divide on 3 clusters) and yeast (divide on 10 clusters)
from the uci-repository (p is compression level for SuMC method).

Rand index

Glass Wine Yeast

Dim. ppp SuMC ORCLUS ppp SuMC ORCLUS ppp SuMC ORCLUS

1 0.11 0.67158 0.48690 0.07 0.53304 0.55881 0.12 0.73253 0.64056

2 0.22 0.69734 0.59094 0.15 0.62928 0.55678 0.25 0.72776 0.49860

3 0.33 0.68150 0.59200 0.23 0.64343 0.53400 0.37 0.70630 0.63279

4 0.44 0.68729 0.64126 0.31 0.66045 0.53660 0.5 0.68570 0.69806

5 0.55 0.68036 0.66202 0.38 0.58217 0.55843 0.62 0.62723 0.70411

6 0.66 0.63916 0.65210 0.46 0.55907 0.567767 0.75 0.63632 0.69944

7 0.77 0.64104 0.6690 0.54 0.55628 0.54840 0.87 0.70354 0.70313

8 0.88 0.52981 0.68957 0.61 0.56224 0.64235 1 0.72156 0.70088

9 1 0.65464 0.64420 0.69 0.55710 0.5890307 — — —

10 — — — 0.77 0.5509427 0.6494001 — — —

11 — — — 0.85 0.568971 0.6478131 — — —

12 — — — 0.92 0.5589412 0.6065511 — — —

13 — — — 1 0.5534819 0.6621596 — — —

The attempts of classification of this kind of vertical axis wind turbines data using
ART-2 neural network were already taken in [18–20]. The results of classification
carried out by that neural network were as good as the one done by a human expert.
ART-type neural networks were also used in analysis of horizontal axis wind turbines
operational states [21–24]. Since a turbine states are visualized by liner components in
data cloud we use subspace clustering method for extracting them. Clusters obtained
by subspaces clustering correspond with different phases of wind turbine precess.
Consequently our method can be applied to preprocessing in the system which uses
ART-type neural networks.

4. Conclusions

In this paper the projection clustering algorithm SuMC was presented. The method
is based on information theory. Consequently we do not need to explicitly specify
dimensions of groups, but on to define the mean number of scalars which is used to
describe a data-point. This approach allows us to construct effective algorithm of
subspace clustering which approximates groups by subspaces. The method changes
on-line dimensions of subspaces corresponding with clusters and finds the optimal
ones.
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