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1 Introduction

The lattice regularization of geometries called Dynamical Triangulations (DT) provides us

with a regularization of four-dimensional Euclidean quantum gravity within the realm of

ordinary quantum field theory [1–3]. Presently we do not know if such a theory exists.

Clearly, if the starting action is just the Einstein-Hilbert action, the resulting theory has to

be non-perturbatively defined since an expansion of the Einstein-Hilbert action around a

fixed background geometry leads to a non-renormalizable theory and since the continuum

Euclidean Einstein-Hilbert action is unbounded from below. The asymptotic safety scenario

of Weinberg discussed general conditions which such a non-perturbative field theory should

satisfy, using the Wilsonian renormalization group (RG) framework [4]. The central idea

was that there should exist a non-Gaussian fixed point which would define the UV limit of

the theory. Evidence for such a fixed point has been found both using the 2+ε expansion [5–

9] and the so-called exact or functional renormalization group equation (FRG) [10–14].

The so-called Regge version of the Einstein Hilbert action is a natural, geometric

implementation of the action on triangulations. Using this action in the DT approach

one has two bare (dimensionless) lattice coupling constants related to the gravitational

coupling constant G and the cosmological coupling constant Λ. In this coupling constant

space one was looking for a phase transition point which could be a candidate for the

proposed asymptotically safe fixed point. A fixed point was found, but the corresponding

phase transition turned out to be of first order [15]. Usually, for critical systems on a lattice

one can only associate continuum field theories to the fixed points if the transition is higher

than first order. This result was disappointing, but in a larger coupling constant space one

would expect to see transitions where one could take a continuum limit. One can clearly
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add higher order curvature terms to the Einstein action in such a way that the theory

becomes renormalizable. It has been shown a long time ago that adding R2 terms to the

action would make the gravity theory renormalizable because the propagator would fall off

like 1/k4 and thus improve the UV behavior of the theory [18, 19]. The problem with such

a realization of renormalizability of quantum gravity is that it is expected to correspond

to a non-unitary theory when rotated back to Lorentzian signature, precisely because of

the additional poles present in the propagator falling off like 1/k4. However, in the context

of the RG approach in the Euclidean sector, with infinitely many coupling constants,

there should exist a critical surface associated with such a theory. Refined perturbative

treatments [20] as well as the the use of FRG methods [21–23] provide evidence for this by

identifying a fixed point asymptotically free (i.e. Gaussian) in coupling constants associated

with the R2 terms and asymptotically safe in Λ and G. This fixed point seemingly differs

from the “purely” asymptotic safe fixed point discussed above, where also the coupling

constants associated with the R2-terms are different from zero [22, 23].

Since DT is a lattice regularization of Euclidean geometries it is natural to consider

an enlarged coupling constant space involving higher curvature terms. Such terms would

most likely be generated anyway if one could apply the Wilsonian RG techniques to the DT

lattices. Similarly, being a lattice regularization, it has the potential to include the non-

perturbative contributions alluded to above. It has already been attempted to explicitly

include the higher curvature terms in the DT formalism [24]. The Regge action on a

d-dimensional triangulation is defined as the sum of the deficit angles around the (d− 2)-

dimensional subsimplices times the (d − 2)-dimensional “volumes” of these subsimplices.

This gives a beautiful geometric interpretation to the Einstein action in d-dimensional

spacetime [25]. The DT formalism “builds” its d-dimensional triangulations from identical

d-simplices where all links have the same length, a, the lattice spacing. For a given (d−2)-

dimensional subsimplex td−2 let o(td−2) denote the order of td−2, i.e. the number of d-

simplices to which td−2 belongs. The deficit angle of td−2 is

ε(td−2) = 2π − o(td−2)θd, θd = cos−1(1/d). (1.1)

In two dimensions we have θ2 = π/3 and there is no intrinsic curvature when we glue

together 6 equilateral triangles. Unfortunately there is no equally beautiful geometric

realization of higher curvature terms. The attempts to represent higher curvature terms

naively as ε(td−2)2 in 4d suffered from the problem that contrary to the situation in 2d, no

flat spacetime can be build from gluing together the equilateral 4d building blocks used in

DT. While this does not exclude the possibility that this type of spacetimes could lead to

sensible results when used in the path integral, the end result of adding an ε(td−2)2 term

was as follows: for a small coupling constant one found the same phases as without the

ε(td−2)2 term. For large coupling constants the system got stalled in weird configurations

minimizing ε(td−2)2, but having nothing to do with flat space. Somewhat more complicated

and less local ways to implement R2 terms are needed in the DT formalism, but so far none

that at the same time are useful for computer simulations have been found.

However, evidence for a potentially non-trivial phase structure of DT came from an-

other source, namely by changing the measure term [26, 27]. The starting point of DT is
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the conjecture that the continuum path integral

Z =

∫
D[g] e−S

EH [g], (1.2)

can be represented via a sum over simplicial manifolds built of equilateral four-simplices

Z =
∑
T

1

C(T )
e−S

R[T ]. (1.3)

The symmetry factor C(T ) is the order of the automorphism group of a triangulation T .

The Regge version of the continuum Einstein-Hilbert action,

SEH [g] = − 1

G

∫
dt

∫
dDx
√
g(R− 2Λ), (1.4)

has a particularly simple realization in DT since all four-simplices are identical

and equilateral:

SR[T ] = −κ2N2 + κ4N4, (1.5)

where N2 is the number of triangles and N4 the number of four-simplices. The bare coupling

constants κ2, κ4 are related to the bare Newton’s constant G and the bare cosmological

constant Λ, respectively.

In the path integral (1.3) each triangulation carries the same weight (except for the

symmetry factor which is one for almost all triangulations). However even in the continuum

it is somewhat unclear which measure D[g] one should choose for the geometries. In the

early history of DT a number of different choices were suggested [28], and in [31] a 4d

measure was proposed which contained a factor
∏N2
t=1 o

β
t :

∑
T

1

C(T )
→

∑
T

1

C(T )

N2∏
t=1

oβt , (1.6)

where ot is the order of triangle t. In 2d Euclidean quantum gravity, regularized by DT,

one can add a similar term, only replacing triangles in (1.6) with vertices. Both in 2d

and 4d (1.6) would then refer to (d − 2)-dimensional subsimplices and via (1.1) to higher

curvature terms, although the identification is rather indirect and to a series of higher cur-

vature terms. From a renormalization group point of view it should not be that important,

since one is just looking for a new fixed point with different physics. It was eventually

shown in [32] that the continuum limit of the 2d lattice theory was independent of any

reasonable choice of β in (1.6). The interpretation given in 2d was that higher curvature

terms were irrelevant operators in a renormalization group framework (which is true from

a naive power counting point of view). In 4d we do not have analytical results and it is

possible that the choice of weight factor is important for a continuum limit,1 and that

1The interesting paper [33] presents a model which has an effective measure term similar to (1.6) and

where it actually is possible to perform some analytic 4d calculations. Unfortunately it is not clear how

closely related the model is to the DT models considered in this article. Nevertheless, in this model the

measure term can change the phase structure.
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if this was the case, the choice (1.6) could be viewed as some effective representation of

higher curvature terms. The implementation of the higher curvature terms via (1.6) is less

direct then the native (and failed) attempt to simply add ε2(t) from (1.1), as mentioned

above.

In [26, 27] it was observed that one seemingly entered a phase dominated by a new

kind of geometries, named the “crinkled phase” by choosing β sufficiently negative. The

fractal dimension (the Hausdorff dimension) of typical geometries was reported close to

4 and the spectral dimension around 1.7. Potentially this new phase could reflect the

presence of higher curvature terms and thus also, according to the FRG results [22, 23], a

non-Gaussian asymptotically safe fixed point.

Interestingly, the same phase was observed when coupling gauge fields to gravity in

four dimensions [26, 27, 35, 36]. This was in contrast to the situation for a scalar field

coupled to gravity, where little change was observed. However, the reported difference

between scalar fields and gauge fields coupled to 4d gravity could be understood as a

consequence of a different choice of discretized coupling of matter to the (piecewise linear)

geometry. If the gauge fields were coupled in the same way as the scalar fields the back

reaction was equally weak as reported for scalar fields. The difference amounted to placing

the gauge fields on the triangles of the 4d triangulation or placing them on the so-called

dual triangles. It is possible to show that a transformation between the two setups leads

to a weight factor of the form (1.6). This gave some arguments in favor of viewing the

crinkled phase as a lattice artifact, since one would not think it should make a significant

difference if one used the lattice or the dual lattice for the gauge fields [34]. However, it is

fair to say that the situation was unsettled, with some people claiming that the crinkled

phase represented continuum physics [35, 36]. In particular, using so-called grand canonical

simulations agreement has been found with continuum anomaly calculations [37, 38].

Recently, there has been a renewed interest in the crinkled phase after it was observed

that the spectral dimension in the crinkled was scale dependent [39] and seemingly behaved

more or less like the spectral dimension in so-called Causal Dynamical Triangulations

(CDT) [40]. CDT is an attempt to formulate a theory of quantum gravity where the path

integral includes only geometries which allow a time foliation (see [41] for a review). Such

a foliation constraint can best be motivated starting out in spacetimes with Lorentzian

signatures, which is how CDT was originally formulated. However, for the purpose of

numerical simulations the time direction has been rotated such that the spacetimes studied

on the computer have Euclidean signature. The result was a different phase structure

compared to the one observed using DT, in particular it includes a second order phase

transition line where one might be able to define a continuum limit. This is in principle a

desirable situation, and the results in [39] for the spectral dimension open up the possibility

that the crinkled phase could be identified with the so-called “phase C”, in the CDT

phase diagram.

A priori one can not rule out such an identification.2 The geometries which enter in

2There are also other possible interpretations of the continuum limit of the CDT theory, in particular

that it can be related to Hořava-Lifshitz gravity [43, 44]. For a detailed discussion we refer to the review [41].
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the path integral in CDT after rotation to Euclidean signature are a subset of those used in

DT and effectively this restriction could move the theory into the same universality class as

the theories with higher curvature terms, i.e. (again relying on the FRG picture) into the

universality class corresponding to the standard asymptotic safety scenario. This would

have an interesting implication. One can show that the CDT theory is unitary (it has a

reflection positive transfer matrix related to the lattice time foliation [42]) and in this way

it would add arguments in favor of the putative asymptotic safety theory actually being

unitary, a fact which is not obvious.

In the following we investigate the effects of modifying the measure term in the way

displayed in eq. (1.6).

2 The numerical setup

Viewing the modification of the measure term as part of the action, our action now depends

on three bare coupling constants κ2, κ4 and β. In our simulations κ4 is not really a

coupling constant since we keep N4, the number of four-simplices, (almost) fixed. More

precisely we work in a pseudo-canonical ensemble of manifolds with topology S4, and use

the partition function

Z(κ2, κ4, β) =
∑
T

1

CT
·
N2∏
t=1

oβt · e
−[−κ2N2+κ4N4+ε(N4−N̄4)2]. (2.1)

The quadratic term proportional to ε fixes the total volume around some prescribed value

N̄4. To achieve this the bare cosmological constant has to be tuned to its critical value

κ4 ≈ κc4, the critical value being the value below which the partition function is divergent.

We use Monte Carlo simulations to study expectation values of observables in the

ensemble defined by the partition function (2.1). The set of triangulations of S4 we use are

the so-called combinatorial triangulations, where every 4-simplex is uniquely defined by a

set of 5 distinct vertices and by demanding that two adjacent 4-simplices share precisely one

face (a three-dimensional subsimplex). This is in contrast to the degenerate triangulations,

defined in [45], and used in the recent study of the crinkled phase [39]. It is believed that

the models defined by combinatorial triangulations and degenerate triangulations belong

to the same universality class, and using a different class of triangulations than used in [39]

will give us a check of the robustness of the results obtained in [39] as well as in this study.

In the Monte Carlo simulations we use the standard 5 Pachner moves to update the

four-dimensional combinatorial triangulations. For d-dimensional combinatorial triangula-

tions of fixed Euler number the d+1 Pachner moves are local changes of the triangulations

which are ergodic [46].

Thus we will be exploring the coupling constant space (κ2, β). We will use Monte

Carlo simulations to generate a number of independent configurations for each value of κ2

and β in a grid in the (κ2, β)-plane with β between 0 and −2 varied in steps of δβ = 0.2

and κ2 between 0.5 and 1.5 varied in steps of δκ2 = 0.1. Using these we will calculate the
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expectation values of observables O over these configurations:

〈O〉conf =
1

Nconf

Nconf∑
i=1

Oi, (2.2)

where Nconf denotes the number of Monte Carlo generated independent configurations at

a particular value of coupling constants and Oi denotes the value of the observable O
calculated for the ith configuration, i = 1, . . . , Nconf .

3 The phase diagram

In order to determine the phase structure of the model we measured a number of “observ-

ables” which can be used to characterize the geometries in the different phases. Observables

which have in the past been useful in distinguishing between the two phases observed for

β = 0 include the average number of vertices 〈N0〉 and the average number of triangles

〈N2〉, as well as their associated susceptibilities

χ(N0) ≡ 〈N
2
0 〉 − 〈N0〉2

N4
, χ(N2) ≡ 〈N

2
2 〉 − 〈N2〉2

N4
. (3.1)

For a fixed 4d topology and fixed N4 N0 and N2 are not independent since one has N0 =

N2/2 − N4 + χE , where the so-called Euler characteristic χE = 2 for the triangulations

with the topology of the four-sphere used in the simulations. We thus show only χ(N2),

which is most natural since N2 is dual to the coupling constant κ2 in the action.

Another observable which will be useful is the radius volume profile V (r). We define

and measure it as follows. Given two four-simplices we define a path between these as a

piecewise linear path between centers of neighboring four-simplices, connecting the centers

of the two four-simplices. The (graph) geodesic distance between the two four-simplices

is defined as the smallest number of steps in the set of paths connecting them. For a

given configuration C and an initial simplex i0, the number of four-simplices at a geodesic

distance r from i0 is denoted as V (r, i0, C). The average over initial points is then given by

V̄ (r, C)N4 =
1

N4

N4∑
i0=1

V (r, i0, C), (3.2)

and the additional average over configurations by

〈V (r)〉N4 ≡
1

Nconf

Nconf∑
C=1

V̄ (r, C)N4 . (3.3)

The average radius is then defined as

〈r〉 ≡ 1

N4

∑
r

r · 〈V (r)〉N4 . (3.4)

We also look for the presence of so-called baby universes separated by minimal necks.

A minimal neck is a set of five tetrahedra, connected to each other, and forming a 4-

simplex which is not present in the triangulation. Cutting the triangulation open along

– 6 –
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Figure 1. Density plots of the susceptibility χ(N2) (left) and the average radius (right) in the

(κ2, β) plane for 〈N4〉 = 160000.

the five tetrahedra will separate the triangulation in two disconnected parts, each with a

boundary consisting of the five tetrahedra, the minimal boundary possible for the class of

triangulations we consider. The smallest of these two disconnected parts is called the “baby

universe”, but the size need not to be small and can be up to half of the total triangulation.

The analysis of baby universe distributions has been very useful as a tool to distinguish

various phases of different geometries in 4d simplicial quantum gravity [47], as well as in

the studies of 2d quantum gravity [48].

3.1 Grid and phase diagram

In the case without non-trivial measure term, i.e. when β = 0, there exist only two phases,

namely the crumpled phase and the branched polymers phase [1–3, 49, 50]. However,

they are separated by a first order transition [15–17], as already mentioned. It occurs at

κ2 ≈ 1.29 (this is the value reported in [15] and it is the extrapolated value for N4 → ∞.

For finite N4 one observes the transition at a pseudo-critical point κ2(N4) which depends

on N4 and which decreases with decreasing N4). At this point (more precisely at the

pseudo-critical point for the finite value of N4 we use) we observe a peak in χ(N2), as

well as a jump in 〈r〉. There is also an abrupt change in the baby universe structure as

depicted in figure 2. The left graph in figure 2 shows the baby universe structure for a

typical configuration in the crumpled phase. One has a huge “parent” universe decorated

with almost minimal baby universes (which are really too small to deserve being called

(baby)-universes). The situation is quite the opposite in the branched polymer phase, as

shown on the right graph in figure 2. In this phase one has a genuine fractal structure of

baby universes of all sizes. From a continuum point of view the problem with this phase is

that the spacetime is too fractal, and spacetime itself, not only the baby universe structure,

seems to be described as a 2d fractal tree.3

3The only exception might be very close to the transition point where arguments have been given in

favor of a different interpretation of the fractal structure [51–53].
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Figure 2. Minimal baby universe graph of a typical configuration in, respectively from left to

right, the crumpled phase ((κ2, β) = (0.5, 0.0)), the crinkled region ((κ2, β) = (2.0,−2.0)) and the

branched polymer phase ((κ2, β) = (2.0, 0.0)).

The additional coupling constant β may introduce new phase(s). We have extensively

investigated a grid of points in the (κ2, β) plane, including the transition point β = 0, κ2 ≈
1.29. Plots of the susceptibility χ(N2) (left) and the average radius (right) for the grid

points are shown in figure 1 (κ2 - horizontal axis, β - vertical axis). For negative β

the maximum of variance χ(N2) (blue line) and a jump in 〈r〉 (red line) do not coincide

any more.

It is observed that the branched polymer phase corresponds to large values of 〈r〉 and a

jump to smaller values of the expectation value is very clear when one leaves the branched

polymer phase. In this sense the branched polymer phase can be clearly distinguished

from other phases by the red curve in figure 1. The (not very pronounced) peak in the

susceptibility seems not to be a signal of a phase transition, as we will discuss later.

We also observe a region in coupling constant space where the properties of typical

configurations are in between those of the crumpled phase and the branched polymer phase.

It is natural to try to classify configurations in this region as being in the hypothetical new

crinkled phase. This region starts in the lower right corner in figure 1 and extend further

right to larger values of κ2 not shown in figure 1. A typical point well inside this crinkled

region is (κ2, β) = (2.0,−2.0) the hypothetical new crinkled phase.4 The minimal baby

universe structure is shown in figure 2. Let us explain how the graphs shown there are

constructed. We look for minimal necks. As already remarked a minimal neck consists of

five tetrahedra forming the boundary of a four-simplex, but such that the four-simplex is

not part of the triangulation. We can cut the triangulation in two disconnected parts along

the five tetrahedra. In this way we obtain two triangulations, each with a minimal boundary

(the five tetrahedra, now belonging to both triangulations). For each triangulation we now

repeat this process, cutting along all minimal necks, and in this way we end up with a

number of disconnected universes with boundaries, where each component (which we also

denote a minimal baby universe) contains no baby universes. We represent each component

with a dot and we connect the dots by a link if their boundaries had originally shared at

4For such values of the coupling constants the acceptance rate in the Monte Carlo simulations is relatively

low, and simulations take a painfully long time.
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least one tetrahedron. In this way minimal necks naturally equip triangulations with graph

structures like the ones shown in figure 2.5

In the crumpled and branched polymers phases it happens very seldom that two mini-

mal necks are neighbors. In these phases the graphs are thus tree graphs, bearing in mind

that the topology of spacetime is that of S4.

The situation is different in the crinkled region. In this region we observe triangles of

high order. We observe that a number of the tetrahedra sharing such a triangle can belong

to two minimal necks. In this way the graph can contain a (long) loop “twisted” around a

high order triangle. Such loops spoil the tree structure seen in the crumpled and branched

polymer phases.

For configurations belonging to the crumpled or the branched polymer phases we never

observe triangles of high order. The situation is different for configurations picked from

the crinkled region. For a given configuration (triangulation) C let ot denote the order of

triangle t. For this configuration we define the average order and average of the logarithm

of ot

Av C ot =
1

N2(C)

∑
t

ot =
10N4(C)

N2(C)
, 〈log ot〉C =

1

N2(C)

∑
t

log ot (3.5)

and the maximum order

Max C ot = Max [ot : t = 1, . . . , N2]. (3.6)

Then 〈Av ot〉, 〈Max ot〉 and 〈log ot〉 are the averages over configurations C of Av C ot,

Max C ot and 〈log ot〉C , respectively. In the crinkled region the maximal order of trian-

gles seems to behave like 〈Max ot〉 ∝ N0.16
4 . At a first glance one would expect that the

measure term,
N2∏
t=1

oβt = eβ·
∑

t log ot (3.7)

would suppress high order triangles for negative β. What really happens is that the value of

the observable conjugate to β, i.e. 〈
∑

t log ot〉, indeed decreases with decreasing β. However,

the distribution of triangles-order P (ot) has a long tail when we approach the crinkled phase

(see figure 3). This makes it possible that even with a decreasing 〈
∑

t log ot〉 we can have

an increasing 〈Av ot〉 and 〈Max ot〉, which is what we observe.

5For those who have access to the electronic version of the article one can zoom in on the figures and

observe a detailed substructure which carries the following information: The links are the minimal necks

separating the baby universes. At the end of all links are vertices of different sizes. Each vertex represents

a component (as defined above). The radius of a vertex is proportional to some power of the size of the

component (i.e. the number of four-simplices in the component). In the crumpled phase this power is 0.3,

while it is 1.0 for the crinkled and crumpled configurations. The powers are chosen in order to give the

best graphic representation. The vertices have different colors: each component that contains the highest

order triangle as a subsimplex is marked red. Similarly we use green color if the component contains the

second highest order triangle. Other vertices are colored blue. In the crinkled phase the maximal order of

a triangle is very high, i.e. there are many four-simplices sharing this triangle and they can be viewed as

forming a loop around the triangle. Consequently, there can be many vertices colored red and they form a

loop. The same is true for the green vertices.
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Figure 3. Typical distributions P (ot) in the branched polymer phase (left curve), in the crumpled

phase (middle curve) and in the crinkled region (right curve with the long tail).

When we move from the branched polymer phase to the crinkled phase the baby uni-

verse structure changes relatively smoothly. However, as mentioned above, the transition

between the two phases is seen clearly by a jump in 〈r〉. At the same time one also observes

a (small) peak in χ(log ot) (defined as 〈〈log ot〉2C〉conf − 〈〈log ot〉C〉2conf) (see figure 6).

We also measured points outside of the grid region - in a less systematic way - and the

results agree with the picture presented above.

Below we summarize characteristics for typical configurations from the branched poly-

mer phase, the crumpled phase and the hypothetical crinkled region.

The branched polymers phase:

• Elongated geometry, 〈r〉 ∝ N1/2
4 .

• Dominated by minimal necks separating baby universes.

• Probability of baby universe of size V is P (V ) ∝ V γ−2(N4 − V )γ−2, where γ = 1
2 is

the string susceptibility exponent.

• Hausdorff dimension dh = 2, spectral dimension ds = 4/3.

• Tree-like structure (cf. figure 2).

The crumpled phase:

• Collapsed geometry, 〈r〉 grows slower than any Nα
4 , α > 0.

• Two singular vertices of order ov ∝ N4 connected by a singular link of order ol ∝ N
2/3
4 .
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between branched polymers and other phases, based on the grid measurements.

• No baby universes beyond the size of a few four-simplices. Thus no susceptibility

exponent γ (formally γ = −∞).

• Hausdorff dimension dh =∞, spectral dimension ds infinite or at least large.

The crinkled region:

• The properties interpolate between crumpled and branched polymer regions for fi-

nite volume, but seem in most cases to approach those of the crumpled phase with

increasing volume. While 〈r〉 is larger than in the crumpled phase it still grows very

slowly with N4.

• One observes triangles of high order, proportional to N0.16
4 , contrary to the situation

in the crumpled and branched polymer regions.

• Many baby universes, but no large baby universes and thus no finite string suscepti-

bility γ (formally γ = −∞).

• The minimal baby universes (the components) define a “tree-like” structure, but this

structure contains also loops related to the triangles of high order (see figure 2).

• The Hausdorff dimension dh is large (most likely infinite) and the spectral dimension

ds seems also large (growing with volume as far as we can check)

– 11 –



J
H
E
P
1
0
(
2
0
1
3
)
1
0
0

2.1

2.2

2.3

2.4

2.5

0 5 10 15 20 25 30 35

〈N
2〉/

N
4

I II III

40k
80k

160k

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30 35

χ
(N

2
) I II III

40k
80k

160k

Figure 5. Plot of 〈N2〉/N4 (left) and χ(N2) ≡ (〈N2
2 〉−〈N2〉2)/N4 (right) for points along the path.

Successive points of the path are on the x-axis, the colors of the x-axis correspond to the colors of

the path segments.

3.2 The path in the (β, κ2) plane

In order to determine if there exists a new crinkled phase we need to perform simulations

for various total volumes and check scaling of the observable. Because this demands vast

CPU resources, we follow the one-dimensional path shown in figure 4 instead of using a

full grid.

We performed measurements for three values of the total volume N4 = 40k, 80k and

160k. The path starts at a point in the crumpled phase (κ2 = 0.5, β = 0.0) and continuously

leads through the crinkled region (κ2 = 2.0, β = −2.0) to stop in the branched polymers

phase (κ2 = 2.0, β = −1.0). If there is a phase transition between a crumpled and a

crinkled phase, the path will have to cross it.

The path consists of three segments marked with different colors to simplify comparison

of plots: a red vertical segment I at κ2 = 0.5, a green horizontal segment II at β = −2.0,

and a blue vertical segment II at κ2 = 2.0. We now describe the behavior of the various

observables when we move along this path.

3.3 Triangle number N2 and triangle order ot

The basic observables, the scaled average number of triangles 〈N2〉/N4, and the correspond-

ing susceptibility χ(N2) ≡ (〈N2
2 〉 − 〈N2〉2)/N4 are shown in figure 5. The successive points

on the path are presented on the x-axis and we have indicated the separation of the line

segments I, II and III by vertical lines.

We do not observe any jump of 〈N2〉 on the path between the crumpled phase and

crinkled region. There is also no jump between the branched polymer phase and crinkled

region, in contrast to what happens at β = 0 when one moves from the crumpled phase

to the branched polymer phase. However, the scaling with N4 changes exactly at the

transition between the crinkled and the branched polymer phase. Inside the branched

polymer phase 〈N0〉 ∝ N4, while this scaling does not hold outside (the relation between

N0 and N2 are N0 = N2/2−N4 + 2 for triangulations of S4, as used here).
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Figure 6. Left figure: plot of the average 〈log ot〉 for points along the path (ot is the order of

triangle t). Right figure: plot of the variance χ(log ot) ≡ 〈(log ot)
2〉 − 〈log ot〉2 for points along

the path.

When we are outside the branched polymer phase curves corresponding to different

spacetime volumes N4 do no longer coincide, as can be seen most clearly on the left side

of figure 5.

Following the path, there is a peak in the susceptibility χ(N2), located in the red

segment. It can also be seen on the grid plot (left plot of figure 1). However, the peak

is decreasing with the total volume N4 and can thus not be viewed as signaling a first or

second order transition between the crumpled phase and a hypothetical crinkled phase.

variance (right) of log ot for different total volumes N4. Because 〈log ot〉 is conjugate

to β, it increases when β increases (red and blue segments). As for χ(N2) also χ(log ot) =

〈〈log ot〉2C〉conf−〈〈log ot〉C〉2conf has its maximum in the red segment, but again as for χ(N2)

it decreases with total volume, and thus does not signal a second or first order transition

between the crumpled phase and a possible crinkled phase. There is finally a (small) peak

of the variance at the transition to the branched polymer phase.

3.4 〈r〉 and size of baby universes

In the branched polymer phase, the Hausdorff dimension dh = 2 and the average radius

scales as 〈r〉 ∝ N
1/2
4 [49]. As shown in figure 1 and figure 7, in this phase 〈r〉 is relatively

large. The jump of 〈r〉 at the boundary of the branched polymer phase is a clear signal

of a phase transition. Figure 7 shows that the jump of 〈r〉 becomes sharper as the total

volume N4 increases. There is no sign of any transition between the crumpled phase and

a possible crinkled phase.

The structure of baby universes allows us to extract further information about the

geometry of a typical configuration. Following the path from the crumpled phase to the

crinkled region, we observe the baby universe graphs dissolve gradually, starting out as

one huge “parent-universe” decorated with minimally small baby universes (left graph of

figure 2), then developing into a connected structure without a distinct parent-universe,

but with many loops (middle graph of figure 2), these loops being associated with triangles

of high order. Although the baby universe structures are very different in the crumpled and
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Figure 7. Left figure: plot of 〈r〉/N1/2
4 for points along the path. Right figure: average size of the

largest baby universe for points along the path.

crinkled regions, we do not observe any abrupt change. When approaching the branched

polymer phase, the loops — and high order triangles — disappear, and a tree-like fractal

structure emerges (right graph of figure 2).

Each minimal neck splits a triangulation into two parts. The smaller part is what we

have denoted a baby universe. In the branched polymer phase almost surely a minimal

neck exists which splits a configuration into two parts of nearly equal size. Thus, the

average size of the largest baby universe is very large and close to half of the total volume.

However, the situation is very different for typical configurations in the crumpled and in

the crinkled regions. Figure 7 (right) shows the average size of the largest baby universe for

successive points of the path. This is maybe the clearest signal of a first order transition.

3.5 The Hausdorff dimension

The Hausdorff dimension reflects certain fractal structures of spacetime. It has been studied

intensively in two-dimensional quantum gravity where one can compare numerical and

analytical results, and it has been measured in the numerical studies of higher dimensional

quantum gravity already referred to above. It has a natural definition on geometries

defined by discrete triangulations and in this sense it is an ideal observable to use in

the present setup.

Let us start with an arbitrary four-simplex i0 in our triangulation C. The neighboring

four-simplices are said to have distance one to our chosen four-simplex. Continuing this

way we can define the spherical shell at distance r from our four-simplex (note that the so

defined spherical shell does not need to be connected). The radial volume, i.e. the number

of four-simplices in the spherical shell at distance r is denoted V (r, i0, C), as mentioned

earlier. In eq. (3.3) we have defined the average 〈V (r)〉N4 operationally in the way we

use it in the Monte Carlo simulations. When the number of configurations, Nconf , i.e.

number of triangulations C used in (3.3), goes to infinity, this average becomes equal

to the average over triangulations defined by the partition function. We define dh, the

Hausdorff dimension, as the (assumed) power like behavior of the average 〈V (r)〉N4 :

〈V (r)〉N4 ∝ rdh−1, 1� r � N
1/dh
4 . (3.8)
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For a finite N4 we have corrections to (3.8) and it is often assumed that for sufficiently

large N4 one can write

〈V (r)〉N4 = N1−1/dhv(x), x =
r

N
1/dh
4

, (3.9)

where

v(x) = xdh−1F (x), F (0) > 0. (3.10)

Formulas (3.9) and (3.10) have the form of finite size scaling relations and are convenient

to use when trying to determine dh. Note that a consequence of the assumed scaling is that

〈r〉N4 ∝ N
1/dh
4 . (3.11)

Let us describe the results of the measurements of the Hausdorff dimension dh. Every-

where in the branched polymer phase we find nice agreement with scaling assumptions (3.9)

and (3.10), and the data are consistent with dh = 2, the result for branched polymers. This

is in agreement with old results obtained along the line β = 0 in the branched polymer

phase. In figure 8 we have shown the result of such a finite size scaling for the choice

dh = 2. One can refine the analysis and determine dh with reasonable accuracy to be two,

but since this is not too important for the discussion we skip the details.

In the crumpled and crinkled regions of the phase diagram the scaling (3.9) and (3.10)

are not well satisfied and cannot be used to determine a dh with any precision [51–53]. This

is in agreement with the old observations along the β = 0 part of the crumpled region,

where it was judged that the Hausdorff dimension was very large since the configurations

were centered around two neighboring vertices of order N4 and the linear extension did

hardly change with N4. Let us follow the path on figure 4 from the crumpled phase,

starting at β = 0 and moving towards the crinkled region. As already emphasized there is

no observed phase transition between the crumpled region and the crinkled region. This is

also the case when it comes to the Hausdorf dimension. As mentioned, it starts out large at

β = 0. Moving into the crinkled phase the structure of the two singular neighboring vertices

is resolved and the extensions of typical configurations grow. Although (3.9) and (3.10)

are not well satisfied there is another way to estimate dh. Surprisingly, the average radial

profile is almost symmetric with respect to the reflection V̄ (r, C)N4 → V̄ (R− r, C)N4 for a

given configuration C, where V̄ (r, C)N4 is defined in eq. 3.2. Thus, before performing the

average over configurations one can center the volume profiles using following procedure.

For a given configuration C we find the center of mass or the average radius of the volume

profile V̄ (r, C) as

rav(C,N4) =
1

N4

∑
r

r · V̄ (r, C)N4 , (3.12)

and redefine the radius coordinate r → r− rav(C,N4) so that the center of mass is located

at r = 0. Afterwards, we perform the average over configurations and find the value of

dh for which the scaled profile vcm(x), subscript cm referring to center of mass, becomes

volume independent.

The fact that one cannot directly use the standard finite size scaling relation (3.9) in

the crumpled phase was first pointed out in [51–53] where it was argued that one should
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simultaneously with N4 change the coupling constant κ2. The redefinition of the radius

coordinate makes our procedure less restrictive than the scaling used in [34], and it allows

us to use (17) for a fixed value of the coupling constants.

The centered radius profiles 〈Vcm(r)〉N4 , subscript cm again referring to center of mass,

and the corresponding scaled and centered radius volume profiles vcm(x) are shown in

figure 9 for N4 = 40k, 80k, 160k for a choice of coupling constants in the crinkled region.

Although the configurations in the crinkled region are not so strongly collapsed as in the

crumpled region dh still comes out very high (dh ≈ 21). Such large values of dh may

indicate that in the infinite volume limit the Hausdorff dimension is infinite. To estimate

dh more precisely one would clearly need larger values of N4. However, the result clearly

differs from the dh in the branched polymer phase and is much closer to the results obtained

in the crumpled region.

3.6 The spectral dimension

The work reported in this article was triggered by the interesting measurements of the

spectral dimension reported in [39]. Let us turn to the measurement of the spectral dimen-

sion for our ensemble of quantum geometries. It can be extracted by studying a diffusion
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process on the given ensemble of geometries. It shares with the Hausdorff dimension the

nice property that it can be defined on piecewise linear geometries in a simple way. We

will study the diffusion of a particle, performing a random walk between (the centers of)

neighboring four-simplices. Denote by ρ(i, i0;σ) the probability that a particle starting at

simplex i0 is found at simplex i after the fictitious (discrete) diffusion time σ. ρ(i, i0;σ)

satisfies the following discrete diffusion equation:

ρ(i, i0;σ + 1) =
1

5

∑
j↔i

ρ(j, i0;σ), ρ(i, i0; 0) = δi i0 , (3.13)

where the sum is evaluated over all simplices j adjacent to i. Eq. (3.13) expresses that the

particle performs a random walk, jumping between centers of neighboring four-simplices.

The average return probability,

P (σ) =
〈
〈ρ(i0, i0;σ)〉i0

〉
conf

, (3.14)

describes the probability of finding a particle at the initial point after diffusion time σ.

The inner average is performed over initial simplices i0. The outer average is performed

over configurations.

Let us define the spectral dimension ds(σ) as

ds(σ) ≡ −2
d logP (σ)

d log σ
. (3.15)

For diffusion on Rd the spectral dimension is equal to d and independent of (the continuous)

diffusion time σ. If we consider a smooth compact manifold ds will be a function of σ which

in the limit where σ → 0 is equal to the topological dimension of the manifold and which

in the limit where σ → ∞ goes to zero. For diffusion on piecewise linear manifolds as

defined here, the short time diffusion reflects the discretization used. Typically one can

obtain quite different results for even and odd discretized times if one uses the simple

implementation (3.13) for the diffusion. However, usually after some diffusion time has

passed one has ds(σodd) ≈ ds(σeven) and for σ not too large there is a plateau independent

of σ which we can then identify with the spectral dimension ds. After that, for a finite N4,

the spectral dimension will decrease slowly to zero.

In figure 10 we have shown the spectral dimension as a function of diffusion time σ in the

crumpled, crinkled and branched polymer regions. The values of N4 used are 40k, 80k, 160k.

For σ < 50 lattice artifacts are pronounced but for larger values ds(σodd) ≈ ds(σeven) merge

into a smooth curve.

In the branched polymer phase we see the plateau mentioned above (and we have not

run the diffusion process long enough to see ds → 0). The value of ds is close to 4/3, the the-

oretical value for branched polymers, again providing evidence that the configurations in-

deed are very much like branched polymers, despite being four-dimensional triangulations.

In the crumpled phase we see no plateau at all and clearly the maximum is increasing

with N4 and we observe a rapid drop towards zero after the maximum. This reflects the

very short distances available for diffusion despite the large values of N4 and thus effectively
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Figure 10. Spectral dimension ds as a function of diffusion time σ. Left: crumpled phase (κ2 =

0.5, β = 0.0). Right: branched polymers phase(κ2 = 2.0, β = −1.0). Bottom: crinkled region

(κ2 = 2.0, β = −2.0).

the high dimensionality of the configurations. If one can talk about a spectral dimension

at all it is clearly large.

In the crinkled region the behavior of the spectral dimension is somewhat similar to

what we observed in the crumpled region, only the maxima of ds(σ) are somewhat smaller

and the diffusion time during which ds(σ) is different from zero is longer. This is a reflection

of the larger extention of the configurations in the crinkled regions for a given N4. However,

the important message is really that the maximum of ds(σ) shows no sign of converging

as a function of N4. This is in contract to the situation in four-dimensional CDT, where

one also observes a σ dependent ds, but as a function of N4 the curves ds(σ)N4 converge

to a universal curve ds(σ)N4=∞. We cannot rule out that the same could happen here

for very large N4, but from the present data we cannot identify anything like a universal

ds(σ)N4=∞.
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4 Conclusions

As described in the Introduction, introducing β as an additional coupling constant in DT-

regularized Euclidean Quantum gravity is potentially very interesting. It could unite a

number of different approaches to quantum gravity: the DT lattice approach, the higher

curvature approach leading to asymptotic freedom and the asymptotic safety approach

based on the existence of a non-Gaussian UV fixed point. It could also, in principle,

make connection to the CDT lattice approach since at least the spectral dimension in the

crinkled phase was reported in [39] to have a scale dependence similar to the one found

in the CDT lattice approach to quantum gravity. However, at least applying conventional

wisdom, in order to be interesting from a continuum point of view one has to be able

to localize a phase transition point where continuum physics is recovered and a whole

number of lattice artifacts fade away. Unfortunately we have not been able to observe

such a phase transition point. What we have observed is a first order phase transition line

which is a natural continuation of the first order phase transition between the crumpled

and the branched polymer phase observed originally at β = 0. Such a continuation was

of course expected when we explored the (κ2, β) coupling constant plane, but it could

have changed into a second order transition point if there had been a genuine crinkled

phase and a phase transition between the crinkled and the crumpled phases. However, we

do not observe any signal, growing with the total volume, of a phase transition between

the crumpled phase and the crinkled phase. Configurations in the crinkled region look

less “crumpled” (V (r), minbu trees, spectral dimension), but the change is gradual when

receding from the crumpled phase and it seems to be a finite size effect.

We cannot completely exclude that we have missed a phase transition between the

crumpled region and the crinkled region. The peak in the susceptibility (χ(N2)) at β = 0

between the crumpled phase and the branched polymer phase is quite narrow and that

could be the case also for a putative transition between a crinkled and crumpled phase.

Thus the peak could fall in between the grid points and remain unobserved. However we

consider this unlikely: since we expect a phase transition line, this line will have many

different distances to the various grid points. Further, if the transition line is so narrow

we expect some of our observables to change relatively abruptly (and we would of course

have used such a change to locate the transition with finer resolution than used in the

basic grid). However we have not observed such rapid changes. Finally, moving along the

“path” shown in figure 4 we have used three different values of N4, and the location of the

putative narrow (pseudo-)critical peak will change with N4, so there is an increased chance

to see a trace one of these peaks at the “path-points”. However, we have observed nothing.

While the results reported here are negative results, we nevertheless feel that they are

important in the sense that they shown that one should probably not spend more time

investigating the so-called crinkled phase. As discussed in the Introduction, there should

exist an asymptotically free-asymptotically safe Euclidean “gravity” theory, obtained by

adding higher curvature terms which serve to make the theory renormalizable and at the

same time cure the unboundedness problem of the Euclidean Einstein-Hilbert action. This

might not be the gravity theory we want, and if it could in some way be rotated back to
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spacetime with Lorentzian signature it might not be unitary, but it should exist. Thus

we should be able to identify it in the DT lattice approach, provided we can find a decent

way to implement the higher curvature terms in the DT formalism. The present results

indicate that the attempts to use the Regge curvature (1.1), even in some more general

way via the suggested measure term (1.6), are too naive, and they tell us to go back to the

drawing board.
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[29] J. Fröhlich, Survey of random surface theory, in the proceedings of Recent developments in

quantum field theory, May 6–10, Copenaghen, Denmark (1985).
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