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Chapter 1

Introduction

This thesis deals with the numerical computation of the Conley index, an invariant which
is useful for analyzing dynamical systems. It was developed in the 1970s for flows, i.e.,
continuous maps ϕ : X × R → X with some additional properties which are satisfied
if ϕ(x ,R) for each x ∈ X is a solution of an ordinary differential equation ẋ = v(x),
where v : Rd → Rd is a continuously differentiable vector field. A flow is a special kind
of dynamical system; the second main example is the iteration of a continuous map
f : X → X .

In both cases, we are interested in the long-time behavior of the system. The concept
of an invariant set is essential for this purpose. A subset of X is invariant if going forward
by any time step maps the set to itself, for example f (S) = S. We call an invariant set
S isolated if it is the largest invariant set inside some topological neighborhood of itself.
For example, in the flow case we mean that there is a compact set M with S ⊂ int M
such that whenever ϕ(x ,R) ⊂ M for some x ∈ M , then x ∈ S.

For these sets, the Conley index is defined as the homotopy type of a certain topo-
logical space. At least for flows. In the case of a map f , an invariant with analogous
properties was developed in a series of publications [RS88, Szy95, FR00]. The defini-
tions therein are closely related and they are using basic homotopy theory. One can
also define such a notion using homology groups [Mro90b]. We present these central
definitions in Chapter 2.

The Conley index of S tells us something about the behavior of the system close to
S, but it does not describe its behavior inside S. An interesting feature is that we can
compute this index without knowing S precisely, but simply by knowing the behavior
of the flow on the boundary of an arbitrary neighborhood M as above. This way, one
can detect for a given set M whether it contains a non-empty invariant set. Computing
Conley indices of several invariant sets, one can also detect if there are orbits connecting
two of them (meaning the orbit approaches one set in backward time and another in
forward time). If X is a differentiable manifold and v is the gradient of a so-called Morse
function, the Conley index generalizes the index in Morse theory (where it is assumed
that S is just a point).
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CHAPTER 1. INTRODUCTION

We do not go further into motivating the Conley index. Good introductions con-
taining example computations for several dynamical systems are [Con78] and [MM02].
As the title reveals, here we are interested in the rigorous numerical computation of
the Conley index. Rigorous numerical computations yield mathematically strict results
as opposed to approximate numerical computations. These approximate computations
are quite popular because implementations usually run fast compared to the methods
we apply here.

In Chapter 3, we recall existing ideas how one can compute the Conley index for
a map f : X → X . Using f (x) := ϕ(x , h) for some h > 0, this also allows computing
the Conley index for a flow ϕ. The main message is that even though defining the
Conley index for flows is easier than for maps, numerical computations can be hard. An
interesting feature of the Conley index is that one does not need to know the trajectories
of all initial conditions precisely in order to compute the Conley index – at least in terms
of homology. Our numerical methods are based on a subdivision of the phase space X
into boxes and on numerically computing for each box a set of boxes covering its image
under f .

In Chapter 4, we compute the Conley index for a Poincaré map P coming from a
non-autonomous ordinary differential equation ẋ = f (t, x) which is periodic, i.e., there
is a number T > 0 such that f (t + T, x) = f (t, x) for all (t, x). Finding the Conley
index of P using the standard approach discussed above would require enclosing the
image of boxes under P after time T . This is infeasible if the solution curves expand
very quickly. Another difficulty is that P is often not defined on every point (t, x), but
only on a subset.

We present a theorem to deal with this situation, which allows us to compute the
Conley index of P integrating the system for a time much smaller than the return time
T of the Poincaré map. This theorem is adjusted to the numerical methods presented
herein. We only sketch its proof and then present an algorithm which shows that the
theorem is indeed useful for numerical applications. The algorithm together with an
analysis of its correctness constitutes the main content of this thesis.

In Chapter 5, we recall how the numerical methods from Chapter 3 can also be
used to find a Morse decomposition. This concept, which was introduced by Charles
Conley, allows us to describe the behavior of the dynamical system inside an isolated
invariant set. More precisely, such a decomposition consists of Morse sets Si ⊂ S for
the given isolated invariant set S and some information about “forbidden” trajectories,
i.e., one can encode that there is no trajectory from a certain Morse set Si to another
one. Unfortunately, we cannot encode the existence of a trajectory directly. But what
looks like a rather sloppy perspective at first sight, makes this description numerically
computable in the rigorous sense.

Also in Chapter 5, we propose a slightly more flexible approach to the discretization
strategy from Chapter 3. In the classical strategy, one would use a fixed time step h> 0
in the whole phase space. This idea has its problems: There is no reasonable heuristic
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CHAPTER 1. INTRODUCTION

for its choice. Quite often, this does not cause trouble because a large range of values
for h can yield useful results. But it is not obvious how one could avoid the bad choices
where the algorithms yield only insufficient information because subdividing the space
into arbitrarily small boxes is not an option since time and memory are limited.

We present a more flexible strategy in which we letτ: X → (0,∞) be any continuous
function and f (x) := ϕ(x ,τ(x)) be the map with which we work numerically. This
allows us to propose a heuristic for choosing τ(x) depending on ‖v(x)‖, the norm of the
given vector field in x . This requires a careful adaptation of the theory cited in Chapter 3
to this new setting. As one would expect, the numerical results can be significantly better
for a system in which the norm of v varies a lot within a region.

Even though most of the scientific contributions of this thesis are contained in Chap-
ters 4 and 5, Chapter 2 containing prerequisites is also quite long. This has two reasons:
First, we want to compute a topological invariant for dynamical systems. This requires
us to recall the definition of this invariant and how we use homology to describe it.
Second, there are several definitions of the Conley index for maps. We compute one of
its versions for the Poincaré map. In order to make this text accessible to readers who
are more familiar with other versions, we recall the relations between these definitions
in Section 2.5. We also propose an additional definition that is unpublished at the mo-
ment. It seems interesting because it encodes information about the dynamics in the
homotopy type of a space – just like in the original definition for flows. But we do not
go into details so as not to get carried away from the main line of thought.

The results appear in logical order in this thesis. Chapter 4 uses results from Chap-
ters 2 and 3. Chapter 5 also uses results from these two chapters, but no results from
Chapter 4. A reader who would like to see the numerical examples before the theory
might want to read the corresponding subsections first. All the numerical examples were
computed on one core of an Intel i5 CPU. The laptop we used has 6 GB of RAM, which
was useful in Example 4.5.2. The source code of the algorithms is publicly available on
the author’s website [web].

The author’s contribution

In Chapter 2, only Subsection 2.5.5 contains original ideas from the author. Section 2.5
shows more clearly than the existing literature that Theorem 2.5.13 suffices to define
all discrete time Conley indices we listed. But the ideas leading to this seminal theorem
in Conley index theory for maps are already contained in [RS88].

Similarly, Chapter 3 does not contain new theoretical ideas, but a numerical simu-
lation showing how important it is to choose a good time step h in Section 3.5.

For Chapter 4, the author developed all the algorithms which are presented in pseu-
docode together with proofs of their correctness in Section 4.4. A series of proofs cul-
minates in Theorem 4.4.7. The ideas in Sections 4.3 to 4.5 are the author’s, who also
implemented the algorithms.
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CHAPTER 1. INTRODUCTION

For Chapter 5, the author found the numerically hard example in Section 5.4 and
a time step heuristic. The algorithmic contribution here is rather small: The author
used existing algorithms and their implementations from [CAPD] and [AKK+09]. The
author’s main theoretical result in Chapter 5 are Lemmas 5.3.4 and 5.3.5 leading to
criterion (B) in Theorem 5.3.6.
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1.1. List of symbols (with page of first appearance)

1.1 List of symbols (with page of first appearance)

N natural numbers {0,1, 2, . . .}
Z+ natural numbers N, 29
Z− non-positive integers {0,−1,−2, . . .}, 29
R+ non-negative real numbers { x ∈ R | x ≥ 0 }, 10
R− non-positive real numbers { x ∈ R | x ≤ 0 }, 11
R>0 positive real numbers { x ∈ R | x > 0 }, 33
X
∐

Y disjoint union (sum) of topological spaces X and Y , 11
∗ base point of a given space or the one-point space {∗}, 11
f ' g maps f and g are homotopic, 11
X ' Y spaces X and Y are homotopy equivalent, 12
[X ] homotopy type of space X , 12
cl U topological closure of set U , 13
bd U topological boundary of set U , 33
X o Y quotient space (X × Y )/({∗} × Y ), 12
Inv(M ,ϕ) invariant part of M , 14
S isolated invariant set, 14
CH∗(S,ϕ) homological Conley index for flow ϕ, 14
CH∗(S, f ) homological Conley index for map f , 24
(N , L) index pair, 14
f(N ,L) index map N/L→ N/L of index pair (N , L), 16
I(N ,L) eH∗( f(N ,L)) for index map f(N ,L), 37
H∗(X , A) singular homology of (X , A), 12
eH∗(X ) reduced singular homology of X , 13
L Leray functor, 22
End category of linear endomorphisms, 22
Aut category of linear automorphisms, 22
gker(α) generalized kernel of α, 22
gim(α) generalized image of α, 22
T∗(ρ) mapping torus of self-map ρ : P → P, 26
X set of cubes, 28
|X | geometric realization of X in Rd , 28
¹Xº geometric realization of X in quotient space Σ, 41
Cd

n cubical n-chains in Rd , 29
c � c′ product of cubical chains c and c′, 30
Ii(Q) i-th factor of the elementary cube Q, 41
πd(Q) product of last d factors of elementary cube Q in R1+d , 41
AI cubes in A with I0(Q) ⊂ I for an interval I , 42
ū chain u shifted along time axis, 43
Sp Morse set, 65
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Chapter 2

Mathematical background

The Conley index is a topological invariant describing the behavior of a dynamical sys-
tem around certain invariant sets (which we call isolated). In this chapter, we recall its
definition and main properties for the cases of continuous and discrete dynamical sys-
tems. The notions introduced here are essential for the later chapters. Notions which
are used only in one of the following chapters are introduced at the beginning of the
respective chapter.

Given an isolated invariant set of a flow or of a discrete dynamical system, its Conley
index is well-defined. Even though we are interested in the Conley index for flows
(as described in [Con78]), we use algorithms developed for the computation of Conley
indices of maps. Therefore, we need to consider both situations here.

2.1 Local and global flows

Definition 2.1.1. A flow on a topological space X is a continuous mapϕ : X ′→ X , where

1. X ′ is an open subset of X ×R such that

(i) X × {0} ⊂ X ′, and
(ii) for every x ∈ X , the set Ix := { t ∈ R | (x , t) ∈ X ′ } is open in R and

connected.

2. For every x ∈ X ,

(i) ϕ(x , 0) = x and
(ii) ϕ(x , s+ t) = ϕ(ϕ(x , s), t) whenever (x , s), (x , s+ t), (ϕ(x , s), t) ∈ X ′.

Replacing R in the definition above by R+, we call the map ϕ a semiflow. If X ′ = X ×R,
we say that ϕ is a global flow. If X ′ ( X ×R, we say that ϕ is a local flow.

A standard way to define a flow is via an ordinary differential equation ẋ = v(x)
for a map v ∈ C1(Rd ,Rd), a vector field. Given such a v, there is a maximal subset
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2.2. Basic notions of homotopy theory

X ′ ⊂ Rd ×R and a flow ϕ : X ′→ X differentiable with respect to t such that

∂

∂ t
ϕ(x , t) = v(ϕ(x , t)) for all (x , t) ∈ X ′.

This is a classical result about ordinary differential equations [Tes12, Theorem 6.1].
Other basic properties of flows can be found in the same source and similar introductions
to dynamical systems. We do not always cite them explicitly.

All our example flows are induced by such a C1 vector field. For these flows, we also
have:

Lemma 2.1.2. Let I+x := Ix ∩R+ and I−x := Ix ∩R− . If ϕ(x , I±x ) ⊂ K for a compact set
K ⊂ Rd , then I±x = R

±.

This means that if I+x is not R+, then the solution curve starting in x leaves any
compact set in forward time. Analogously for I−x .

Remark 2.1.3. All the invariants we introduce later only consider a given flow inside a
compact region K of the phase space X . Using the lemma, it does not matter for these
invariants if a flow is only local or global. We sometimes assume that ϕ is a global flow
to make the presentation simpler, tacitly having this in mind.

2.2 Basic notions of homotopy theory

Whenever we write (X , A) for topological spaces X and A, we mean that A ⊂ X with A
having the subspace topology and call it a pair of spaces. A compact pair is a pair of
spaces (X , A) such that X is a compact topological space and A is closed in X (therefore
A is also compact). A pointed space is a pair of spaces (X , {x0}). In this situation, we
usually call X pointed and denote the base point x0 by ∗.

If (X , A) and (Y, B) are pairs of spaces and f : X → Y such that f (A) ⊂ B, then we
write f : (X , A)→ (Y, B).

We call two maps f , g : X → Y are homotopic relative to A (written f ' g rel A) if
there is a continuous map H : X ×[0, 1] such that H(x , 0) = f (x) and H(x , 1) = g(x) for
x ∈ X , and additionally H(x , t) = f (x) = g(x) for all x ∈ A, t ∈ [0, 1]. If A=∅, we call
f and g homotopic and write f ' g. Two maps of pairs (X , A)→ (Y, B) are homotopic
if they are homotopic relative to A.

We also need to consider pointed maps on certain quotient spaces. For a topological
space X and a subspace Y ⊂ X , we let the underlying set of the space X/Y be the disjoint
union of the sets (X \ Y ) and {∗}, where {∗} is the one-point space. We let q : X → X/Y
be defined as q(x) = [x] for x ∈ X \Y and q(x) = ∗ for x ∈ Y . As usual, we endow X/Y
with the finest topology making q continuous, i.e., we let Z ⊂ X/Y be open if q−1(Z) is
open in X . We consider the quotient X/Y a pointed space with base point ∗. If Y = ∅,
we get X/∅ = X

∐

{∗}, the disjoint union (sum, coproduct) of X and the one-point
space.
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2.3. Singular homology

If X is a pointed space and Y is an unpointed space, then

X o Y :=
X × Y
{∗} × Y

(2.1)

is a pointed space. We call pointed maps f , g : X → Y homotopic if there is a continuous
map H : X o [0,1]→ Y such that H(x , 0) = f (x) and H(x , 1) = g(x) for all x ∈ X . This
is equivalent to saying that f and g are homotopic relative to the base point.

The following definitions apply to pointed and unpointed continuous maps: Two
spaces X and Y are homotopy equivalent if there are continuous maps r : X → Y and
s : Y → X such that sr ' idX and rs ' idY . This is written as X ' Y . The equivalence
class of all spaces homotopy equivalent to X is denoted by [X ] and is called the homotopy
type of X .

2.3 Singular homology

Throughout this thesis, we let F be a field. A graded vector space is a sequence of vector
spaces V = V∗ = {Vn | n ∈ N } over the same field F. A linear map α: V →W between
graded vector spaces is a sequence of linear maps αn : Vn→Wn.

Given a pair of topological spaces (X , A), the graded vector space H∗(X , A) is defined
as the relative singular homology of (X , A). We do not recall the complete construction of
singular homology here. The most common construction – simplicial singular homology
– is presented in standard textbooks on algebraic topology, e.g. [Spa66, Hat02]. An
equivalent alternative – cubical singular homology – is sketched in Section 3.2.

A continuous map f : (X , A)→ (Y, B) induces a linear map f∗ = H∗( f ): H∗(X , A)→
H∗(Y, B). Singular homology satisfies the following axioms of homology:

1. It is a covariant functor, i.e.,

(a) H∗(id(X ,A)) = idH∗(X ,A);

(b) if the composition g f exists for maps f and g, then H∗(g f ) = H∗(g)H∗( f ).

2. (Homotopy) If f ' g : (X , A)→ (Y, B), then f∗ = g∗ : H∗(X , A)→ H∗(Y, B).

3. (Long exact sequence) There are linear maps ∂n : Hn(X , A)→ Hn−1(A) for all n≥ 1
such that:

(a) For the inclusions i : A → X and j : X = (X ,∅) → (X , A), the sequence of
vector spaces and linear maps

· · · Hn(A) Hn(X ) Hn(X , A) Hn−1(A) · · ·
in jn ∂n in−1

is exact.
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2.3. Singular homology

(b) A map f : (X , A)→ (Y, B) induces a morphism f∗ = H∗( f ) between the long
exact sequences of these pairs with ∂n fn = fn−1∂n for n≥ 1.

4. (Excision) If U ⊂ X is an open set with cl U ⊂ int A, then the inclusion

k : (X \ U , A\ U)→ (X , A)

induces an isomorphism k∗ : H∗(X \ U , A\ U)→ H∗(X , A).

5. For the one-point space {∗}, Hn({∗}) =

(

F if n= 0,

0 if n> 0.

6. (Additivity) For a disjoint union X =
∐

Xk of spaces Xk, the inclusions ik : Xk→ X
induce an isomorphism

⊕

k Hn(Xk)→ Hn(X ).

If a space X is pointed with base point ∗ ∈ X , we let its reduced homology be
eH∗(X ) = H∗(X , {∗}). For any choice of this base point ∗ in X , these vector spaces
eH∗(X ) are isomorphic. Given an unpointed space X , we can construct the pointed space
X+ := X

∐

{∗}. Then we always have eH∗(X+) = H∗(X ). We often write simply ∗ for the
topological space {∗}. In order to relate H∗(X , A) and eH∗(X/A), we use the following
condition on a pair of spaces.

Definition 2.3.1 ([Hat02, Section 2.1]). A pair (X , A) of spaces is called a good pair if

(i) X is Hausdorff,

(ii) A is a non-empty closed subspace of X , and

(iii) A is a deformation retract of a neighborhood in X .

For good pairs, the singular homology of the quotient and the relative singular ho-
mology are naturally isomorphic in the following sense.

Proposition 2.3.2 ([Hat02, Proposition 2.22]). For good pairs (X , A), the quotient map
q : (X , A)→ (X/A, A/A) induces an isomorphism

q∗ : H∗(X , A)→ H∗(X/A, A/A) = H∗(X/A,∗) = eH∗(X/A).

The following version of excision is useful for defining a homological version of the
Conley index in Section 2.5.

Proposition 2.3.3 ([Spa66, Section 4.8, Theorem 9]). Given a compact pair (X , A) and
an open subset U ⊂ X such that (X \U , A\U) is good, the inclusion k : (X \U , A\U)→ (X , A)
induces an isomorphism k∗ : H∗(X \ U , A\ U)→ H∗(X , A).
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2.4. The Conley index for flows

2.4 The Conley index for flows

From here throughout the rest of this thesis, the letter X denotes a locally compact
Hausdorff space. In our examples, X often has the extra structure of a metric space or
a manifold, but these properties are not needed to define the Conley index. We recall
results from [Con78].

Letϕ be a global flow on X (but note Remark 2.1.3). A set S ⊂ X is called invariant if
ϕ(S,R) = S. Note that this is equivalent toϕ(S,R) ⊂ S since S = ϕ(S×{0}). The Conley
index is not defined for arbitrary invariant sets of a dynamical system. We require the
additional property of being isolated invariant as defined below. For M ⊂ X , let

Inv(M ,ϕ) = { x ∈ M | ϕ(x ,R) ⊂ M }

be the invariant part of M . This set is obviously invariant. It contains all invariant
subsets of M , i.e., Inv(M ,ϕ) is the union of all invariant subsets of M .

Definition 2.4.1. A set S ⊂ X is an isolated invariant set if there is a compact set M ⊂ X
such that

S = Inv(M ,ϕ) ⊂ int M .

In this situation, M is called an isolating neighborhood of S. Note that M is closed
because X is Hausdorff. It is also not difficult to see that S is closed in M . Since S is a
closed subset of the compact set M , it is also compact.

Note that the empty set ∅ is an isolated invariant set. We can consider the isolating
neighborhood ∅, but any compact set M with Inv(M ,ϕ) = ∅ is an isolating neighbor-
hood of the empty set.

Definition 2.4.2. Let S be an isolated invariant set for ϕ. A compact pair (N , L) is an
index pair for (S,ϕ) if it has the following properties:

(i) S = Inv(cl(N \ L),ϕ) ⊂ int(N \ L).

(ii) If x ∈ L, t > 0 and ϕ(x , [0, t]) ⊂ N , then ϕ(x , [0, t]) ⊂ L.

(iii) If x ∈ N , t > 0 and ϕ(x , t) /∈ N , then there is a t ′ ∈ [0, t] such that ϕ(x , t ′) ∈ L
and ϕ(x , [0, t ′]) ⊂ N .

Definition 2.4.3. Let (N , L) be an index pair for (S,ϕ).

• The homotopy type Conley index of (S,ϕ) is the pointed homotopy type [N/L].

• The homological Conley index is CH∗(S,ϕ) := eH∗(N/L).

The homotopy type Conley index is well-defined, i.e., index pairs (N , L) exist for
any given isolated invariant set S and the resulting pointed homotopy type of N/L is the
same for any index pair [Con78]. The homological Conley index is well-defined because
homology only depends on the homotopy type of the space (Section 2.3).
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2.5. The Conley index for maps

Also note that N/L is a compact Hausdorff space because it is a compact pair and X is
Hausdorff. More precisely: The quotient N/L is Hausdorff because the compact subset
L of the Hausdorff space N can be separated from any point x ∈ N \ L. The quotient is
compact because N is compact and N/L is its image under a continuous map.

It is also possible to make statements about the Conley index for a parametrized
flow, i.e., for a continuous map

ϕ : [0,1]× X ×R→ X ,

where each ϕλ := ϕ(λ, ·, ·) is a flow.

Proposition 2.4.4 ([MM02]). If M is an isolating neighborhood for ϕλ for some λ ∈
[0, 1], then there is a set U open in [0,1] with λ ∈ U such that M is an isolating neighbor-
hood for ϕµ for every µ ∈ U.

Moreover, if M is an isolating neighborhood for all λ ∈ [0,1], then the Conley indices
of (Inv(M ,ϕλ),ϕλ) are the same for all λ ∈ [0, 1].

Later in this thesis, this continuation property is not directly mentioned. But it ex-
plains why it is a good idea to represent isolating neighborhoods numerically: They are
still isolating neighborhoods under small perturbations of ϕλ, even though the isolated
invariant set inside usually changes. The continuation property is also important to see
that the methods in Chapter 5 can be applied to parametrized flows. But parametrized
flows are not the main focus of this thesis, hence we do not go into details.

We mention only one important example for a Conley index here: The Conley index
of the empty set is [∗], the homotopy type of the one-point space. This can be seen by
considering the index pair (N , L) = (∅,∅). Then ∅/∅= ∗ by the definition of quotient
space. In homology, this yields CH∗(∅,ϕ) = eH∗(∗) = 0.

2.5 The Conley index for maps

In this section, we let f : X → X be a continuous map. There are several ways of defining
the Conley index for such a map (a discrete dynamical system). Each definition uses a
certain kind of index pair and an equivalence relation on a map on this index pair (cf.
[RS88, Mro90b, Szy95, FR00]). This abundance of definitions is not as diverse as one
might think from a quick look at the literature. There is one definition of index pair and
one equivalence relation generalizing all the other definitions (cf. Definition 2.5.14).

In addition to the general Definition 2.5.2 of an index pair, we introduce two special
kinds of index pairs: strong index pairs and weak index pairs. These concepts are useful
numerically – they can be constructed with our methods from rigorous numerics – and
theoretically: They give criteria for detecting an index pair. Whether a compact pair is
an index pair in the general sense can be hard to check.

In Subsection 2.5.2, we recall the concept of an index map and present the most gen-
eral definition of the Conley index for a map. We also recall the classical Theorem 2.5.12
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which is essential to prove that the Conley index is well-defined. In Subsections 2.5.3
and 2.5.4, we present algebraic versions using homology. These definitions are equiva-
lent in all our numerical examples in this thesis because we work with finite-dimensional
vector spaces.

In Subsection 2.5.5, we present a new approach to defining the Conley index for
maps. Even though it is not used later in the thesis, it seems quite interesting from a
theoretical perspective: It shows that the index map can be used to define the Conley
index as the homotopy type of a space via a simple gluing construction. The author
hopes that this makes the Conley index more accessible to topologists, who are usually
familiar with this type of construction.

Definition 2.5.1.

(i) A solution of f through a point x ∈ X is a map γ: Z→ X such that γ(0) = x and
γ(n+ 1) = f (γ(n)) for all n ∈ Z.

(ii) For M ⊂ X , let Inv(M , f ) := { x ∈ M | there is a solution γ: Z→ M through x }.
(iii) A compact set M ⊂ X is an isolating neighborhood of the isolated invariant set S if

S = Inv(M , f ) ⊂ int M .

2.5.1 Index pairs and index maps

There are several definitions of index pairs for maps in the literature. We list three
definitions here which are used throughout this thesis. For defining the Conley index,
the following most general one suffices.

Definition 2.5.2. Given an isolated invariant set S ⊂ X , a compact pair (N , L) is an
index pair for (S, f ) if

(i) S = Inv(cl(N \ L), f ) ⊂ int(N \ L) and

(ii) the pointed map

f(N ,L) : N/L→ N/L,

x 7→

(

f (x) if x , f (x) ∈ N \ L,

∗ otherwise,

is continuous.

In this case, we call f(N ,L) the index map.

Example 2.5.3. Let X = R, f (x) = 2x and S = {0}. Choosing N = [−2,2] and L =
[−2,−1] ∪ [1,2] gives an index pair (even in the sense of Definition 2.5.6) for (S, f ).
Then N/L = S1, the pointed circle, and f(N ,L) ' idS1 .

The following criterion is useful to detect an index pair.

16



2.5. The Conley index for maps

Proposition 2.5.4 ([RS88, Theorem 4.3]). For a compact pair (N , L), the map f(N ,L) as
defined above is continuous if and only if the two following conditions are true for every
x0 ∈ f −1(N \ L):

(i) If x0 ∈ L, then there is an open set U ⊂ X such that x0 ∈ U and f (U∩N \ L) ⊂ X \N.

(ii) If x0 ∈ N \ L, then there is an open set U ⊂ X such that x0 ∈ U and f (U ∩ N \ L) ⊂
N \ L.

The following two definitions of special index pairs are not needed in this chapter
to define the Conley index for maps, but they appear in constructions in later chapters.
In both definitions, we let S ⊂ X be an isolated invariant set for f .

Definition 2.5.5 ([KMM04, Def. 10.76], [Mro06, Def. 4.2]). A compact pair (N , L) is a
weak index pair for (S, f ) if

(i) S = Inv(cl(N \ L), f ) ⊂ int (N \ L),

(ii) f (L)∩ N ⊂ L, and

(iii) cl( f (N) \ N)∩ N ⊂ L.

Definition 2.5.6 ([MM02, Def. 3.24]). A compact pair (N , L) is a strong index pair for
(S, f ) if

(i) S = Inv(cl(N \ L), f ) ⊂ int (N \ L),

(ii) f (L)∩ N ⊂ L, and

(iii) f (N \ L) ⊂ N .

Note that both definitions only differ in condition (iii). This condition is usually
described by saying that L is an exit set. Condition (ii) means that L is forward invariant
in N .

A strong index pair is a weak index pair. And a weak index pair is an index pair in
the sense of Definition 2.5.2. Both these properties are shown in [Mro06].

Condition (iii) of Definition 2.5.6 is sometimes formulated differently as condition
(iii’) in the following lemma (cf. [Mro06, Definition 4.1] and [MSW15]), but this yields
the same definition as we see in the following simple lemma.

Lemma 2.5.7. Condition (iii) in the definition of a strong index pair is equivalent to the
following subset relation, where the given equality is obvious:

(iii’) N \ f −1(N) = N ∩ f −1(X \ N) ⊂ L.

Proof. (iii) =⇒ (iii’): Let x ∈ N \ f −1(N). Assume x /∈ L. Then f (x) ∈ N because of
(iii) in Definition 2.5.6. But this contradicts f (x) /∈ N . Overall x ∈ L.

(iii’) =⇒ (iii): Let x ∈ N \ L. Assume that f (x) /∈ N . Then x ∈ L by condition (iii’).
A contradiction. Overall f (x) ∈ N .
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2.5. The Conley index for maps

Given an isolated invariant set S of f , there is always a strong index pair for (S, f )
([Mro90b, Mro94]). The index map induces a linear map eH∗( f(N ,L)) on eH∗(N/L) =
H∗(N/L,∗). For numerical purposes, we are also interested in a corresponding map
induced in relative homology H∗(N , L). Assume that (N , L) is a strong index pair. Then
f induces a map of pairs

fP : (N , L)→ (N ∪ f (L), L ∪ f (L)),

x 7→ f (x).

Following [Mro06], Section 5, this yields a commutative diagram on pairs of spaces,
where i is an inclusion of pairs and q is the quotient map:

(N , L) (N ∪ f (L), L ∪ f (L)) (N , L)

(N/L,∗) (N/L,∗).

fP

q q

i

f(N ,L)

Now assume that (N , L) is good. Then q∗ = H∗(q) is an isomorphism by Proposi-
tion 2.3.2, and i∗ = H∗(i) is an isomorphism by Proposition 2.3.3 (we remove f (L) \ N
from the large pair and this set is open in N ∪ f (L)). Applying the homology functor H∗
to the diagram above yields the commutative diagram

H∗(N , L) H∗(N ∪ f (L), L ∪ f (L)) H∗(N , L)

H∗(N/L,∗) H∗(N/L,∗).

q∗∼=

fP∗

q∗∼=

i∗
∼=

eH∗( f(N ,L))

(2.2)

We usually use the lower linear map in definitions, but when working with good
pairs, we often work with fP∗ instead. A similar diagram exists for weak index pairs.
The homological index map H∗( f(N ,L)) is used in Subsections 2.5.3 and 2.5.4 to define
algebraic versions of the Conley index. For our numerical computations in Chapter 4,
these two algebraic index definitions coincide as we show in Theorem 2.5.23.

2.5.2 Homotopy shift equivalence

In this subsection, we recall a very general definition of the Conley for maps. We present
it here as introduced in [FR00]. The only difference is that we use general index pairs
and not the special version used therein (called filtration pairs), but our generalization
does not make the proofs more complicated in any way.

Definition 2.5.8. We call homotopy classes [ f ] and [g] of continuous maps f : P → P
and g : Q→Q shift equivalent if there are continuous maps r : P →Q and s : Q→ P such
that gr ' r f , sg ' f s, sr ' f n and rs ' gn for some n ∈ N.
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2.5. The Conley index for maps

The goal of the following discussion is Theorem 2.5.13. The ideas presented until
then are not used elsewhere in this thesis.

We use the following abbrevation for a forward trajectory: For 0≤ n< m, we define
the sets

f [n,m](x) := { f n(x), f n+1(x), . . . , f m(x)}

and, for U ⊂ X ,
f [n,m](U) :=

⋃

x∈U
f [n,m](x) ⊂ X .

We want to define a map between two index pairs for the same invariant set. First,
define for an arbitrary set M ⊂ X :

Invn(M , f ) := { x ∈ M | there is a y ∈ M with f n(y) = x and f [0,2n](y) ⊂ M }.

Obviously, Invn+1(M , f ) ⊂ Invn(M , f ). If M is compact, then [FR00, Proposition 2.2]:

Inv(M , f ) =
⋂

n≥0

Invn(M , f ).

Lemma 2.5.9 ([RS88, Proposition 3.1]). Let M and M ′ be isolating neighborhoods (com-
pact by definition) for (S, f ). Then there is an n≥ 0 such that

Invn(M , f ) ⊂ int M ′.

Proof. First note that Invn(M , f ) is closed because M is closed. Therefore, for each
n≥ 0, Vn := Invn(M , f ) \ int M ′ is a closed and hence compact set with Vn+1 ⊂ Vn. Now

⋂

n∈N
Vn =

⋂

n∈N
Invn(M , f ) \ int M ′ =∅.

Since the intersection of any nested sequence of non-empty compact sets is non-empty,
there must be an n such that Vm =∅ for m≥ n.

Here we denote index pairs by Greek letters. We letα= (Nα, Lα) and β = (Nβ , Lβ) be
index pairs for (S, f ). The index maps are now denoted by fα = f(Nα,Lα) and fβ = f(Nβ ,Lβ ),
respectively. Then, using Lemma 2.5.9 and the fact that cl(Nα \ Lα) and cl(Nβ \ Lβ) are
isolating neighborhoods of (S, f ), there is a number n≥ 0 such that

Invn(Nα \ Lα, f ) ⊂ Nβ \ Lβ and Invn(Nβ \ Lβ , f ) ⊂ Nα \ Lα.

Let u = u(α,β) be the smallest n ≥ 0 with this property. Obviously, u(α,β) = u(β ,α),
and we get the following property right from the definition of u= u(α,β).

Lemma 2.5.10. For any x ∈ Nα \ Lα: If f [0,2u](x) ⊂ Nα \ Lα, then f u(x) ∈ Nβ \ Lβ .
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2.5. The Conley index for maps

Now we define

Cαβ := { x ∈ Nα \ Lα | f [0,2u](x) ⊂ Nα \ Lα and f [u+1,3u+1](x) ⊂ Nβ \ Lβ }

and the map (not necessarily continuous)

fβα : Nα/Lα→ Nβ/Lβ ,

x 7→

(

f 3u+1(x) if x ∈ Cαβ ,

∗ otherwise.

A special case is α = β . Then u(α,α) = 0 and fα = fαα. The following important
theorem is shown in [RS88], where it is stated for a diffeomorphism f on a manifold.
The proof therein works for every continuous map f : X → X on a Hausdorff space X .
In order to see this, we sketch some details of that proof here.

Remark 2.5.11. Note that the set N \ L is open in N because L is closed in N by assump-
tion. Therefore, the image of N \ L in the quotient N/L is also open. Even more: N \ L
as a subspace of N is homeomorphic to N \ L as a subspace of N/L, by the definition
of quotient topology. Hence, there is no need to distinguish these two spaces. A set
U ⊂ N \ L is open in N/L if and only if U is open in N \ L.

Theorem 2.5.12 ([RS88, Theorem 6.3]).

(i) fβα is continuous.

(ii) fαβ ◦ fβα = f 6u(α,β)+2
α

(iii) fβα ◦ fα = fβ ◦ fβα

Proof. The idea for the proof of (i) is to consider five cases depending on where x0 lies
within Nα/Lα, and to show for each case that fβα is continuous in x0. We do not recall all
cases here, but only present one difficult case from the proof in [RS88] slightly adapted
to our needs here. The proofs of the other four cases are similar or shorter. We mainly
use Lemma 2.5.10 and the continuity of the index maps fα and fβ .

Case 5: Suppose that x0 ∈ Cαβ . We want to show that there is an open set U ⊂ X
such that x0 ∈ U and U ∩ Nα \ Lα ⊂ Cαβ .

For i ∈ {0, . . . , 2u−1}, we know that f i(x0) ∈ f −1(Nα\ Lα). By Proposition 2.5.4(ii),
there are open sets Ui ⊂ X such that f i(x0) ∈ Ui and

f (Ui ∩ Nα \ Lα) ⊂ Nα \ Lα.

Applying Lemma 2.5.10, we have f u(x0) ∈ Nβ \ Lβ . Applying Proposition 2.5.4(ii) to
the index pair (Nβ , Lβ) yields: For each i ∈ {u, . . . , 3u}, there is an open set Vi ⊂ X such
that f i(x0) ∈ Vi and

f (Vi ∩ Nβ \ Lβ) ⊂ Nβ \ Lβ .
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2.5. The Conley index for maps

For 0≤ i ≤ 3u, we define open sets

Wi :=











Ui if 0≤ i ≤ u− 1,

Ui ∩ Vi if u≤ i ≤ 2u− 1,

Vi if 2u≤ i ≤ 3u.

Now we let

U :=
3u
⋂

i=0

f −i(Wi) ⊂ X ,

an open set. Let x ∈ U ∩ Nα \ Lα. Then we argue via induction over increasing i. For
0≤ i ≤ 2u− 1, we have the implication

f i(x) ∈ Nα \ Lα and f i(x) ∈ Ui =⇒ f i+1(x) ∈ Nα \ Lα.

Overall, f [0,2u](x) ⊂ Nα \ Lα, and therefore, using Lemma 2.5.10, f u(x) ∈ Uu ∩Nβ \ Lβ .
From this, we get f [u,3u+1](x) ∈ Nβ \ Lβ by induction as before.

We have shown that U ∩ Nα \ Lα ⊂ Cαβ . Therefore, fβα(x) = f 3u+1(x) for x ∈
U ∩ Nα \ Lα. One should note that U ∩ Nα \ Lα is open in Nα \ Lα and therefore open in
in Nα/Lα (Remark 2.5.11). Since f is continuous, fβα is continuous in x0. This finishes
the proof of case 5.

The statements (ii) and (iii) are special cases of [RS88, Theorem 6.3(iii)], which
states that given three index pairs for (S, f ), one has that

fγβ ◦ fβα = f 3(u(β ,γ)+u(α,β)−u(α,γ))+1
γ fγα = fγα f 3(u(β ,γ)+u(α,β)−u(α,γ))+1

α

For us, the main purpose of Theorem 2.5.12 is now the following observation.

Theorem 2.5.13. If S is an isolated invariant set for f , and (N , L) and (N ′, L′) are index
pairs for (S, f ), then there are n ∈ N and maps r : N/L → N ′/L′ and s : N ′/L′ → N/L
such that r f(N ,L) = f(N ′,L′)r, s f(N ′,L′) = f(N ,L)s, sr = f n

(N ,L) and rs = f n
(N ′,L′).

This theorem shows that the following definition does not depend on the choice of an
index pair. This definition was first proposed in [FR00] using a special kind of index pair
and proving the theorem above only for this special kind of index pairs (Theorem 4.3
therein). But as we have just shown, this extra assumption is not necessary for the
definition to make sense.

Definition 2.5.14 ([FR00, Definition 4.8]). The shift equivalence Conley index of (S, f )
is the shift equivalence class of [ f(N ,L)] for an arbitrary index pair (N , L).

The author of this thesis could not find any publication claiming our result that this
definition makes sense with the most general Definition 2.5.2 of an index pair. This
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2.5. The Conley index for maps

seems to be implicit knowledge among scientists working with the Conley index for
maps.

The other definitions we present for the discrete time Conley index are special cases
of this definition. The shift equivalence definition is even universal in a certain sense
described in [Szy95, Section 6], where a definition equivalent to Definition 2.5.14 is
used [FR00, Section 8].

2.5.3 Leray functor

Given an endomorphism α: V → V of graded vector spaces (e.g., homology groups), the
Leray functor L assigns to α an automorphism L(α). We recall its construction introduced
in [Mro90b, Section 4]. Let End be the category with objects all the endomorphisms of
graded vector spaces. A morphism in End from α to β is a commutative diagram

V W

V W

r

α β

r

in the category of graded vector spaces. This is written ~r : α → β . Let Aut be the full
subcategory of End with objects the automorphisms. For an arbitrary endomorphism
α: V → V , let

gker(α) := { v ∈ V | there is an n ∈ N such that αn(v) = 0 } and

gim(α) := { v ∈ V | for all n ∈ N : v ∈ im(αn) }.

We call gker(α) the generalized kernel and gim(α) the generalized image of α. An object
α: V → V of End induces a monomorphism

α′ : V/gker(α)→ V/gker(α),

v + gker(α) 7→ α(v) + gker(α).

From this we define an automorphism by restricting domain and codomain:

α′′ : gim(α′)→ gim(α′),

v + gker(α) 7→ α(v) + gker(α).

Then for an object α: V → V of End, we let L(α) := (gim(α′),α′′). For a morphism
~r : α→ β in End, we let L(~r) be the commutative diagram

gim(α′) gim(β ′)

gim(α′) gim(β ′),

r ′′

α′′ β ′′

r ′′
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where r ′′ is defined analogously to f ′′. Showing that this yields a well-defined functor
L: End → Aut is straightforward. The proofs are given in [Mro90b, Section 4]. If
α ∈ End is already an automorphism, then L(α) = α. Obviously, two objects α,β of Aut
are isomorphic if and only if there is an isomorphism r of graded vector spaces such that
rα= β r. In this situation, we write α∼= β .

In the numerical situations considered in this thesis, taking the generalized image
in the Leray functor definition does not do anything because of the following simple
observation.

Lemma 2.5.15. If V ′ = V/gker(α) is a finite dimensional vector space, then α′′ = α′ in
the definitions above.

Proof. The relation
dim(V ′) = dim(ker(α′)) + dim(im(α′))

from linear algebra together with dim(ker(α′)) = 0 yields that im(α′) = V ′.

A useful criterion is the following Proposition 2.5.17. We give a direct proof here
specializing the proof presented in [MSW15]. For the proof, we first recall a simple fact
that holds for morphisms in any category.

Lemma 2.5.16. Let r : V → W be a linear map. If there are linear maps s, s′ : W → V
such that sr = idV and rs′ = idW , then r is an isomorphism.

Proof. An inverse of r is given by srs′ since (srs′)r = sr and r(srs′) = rs′.

Proposition 2.5.17 ([MSW15, Proposition 2.1]). Let α: V → V and β : W → W be
linear endomorphisms of graded vector spaces, and let ~r : α → β be a morphism in End.
Assume that there is a number n≥ 1 and a linear map s : W → V such that the diagram

V W

V W

r

αn βns

r

(2.3)

commutes. Then L(~r): L(α)→ L(β) is an isomorphism in Aut.

Proof. First note that αn induces a morphism
−→
αn : αn → αn, similarly for βn. By (2.3),

the linear map s : W → V induces a morphism ~s : βn → αn, and r induces a morphism
r̄ : αn → βn. Note that r̄ and ~r are both induced by r, but they have different domains
and codomains, therefore we denote them differently. We get the following commutative
diagram in End:

αn βn

αn βn

−→
αn

r̄

−→
βn

~s

r̄

.
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Applying the functor L: End→ Aut yields the commutative diagram

L(αn) L(βn)

L(αn) L(βn),

L
�−→
αn
�

L(r̄)

L
�−→
βn
�L(~s)

L(r̄)

in which the underlying linear map of L(
−→
αn) is L(αn), an automorphism of vector spaces.

Similary for βn. Therefore, L(
−→
αn) and L(

−→
βn) are automorphisms as morphisms in Aut.

The upper triangle shows that L(r̄) has a left inverse, the lower triangle shows that it
has a right inverse. It is therefore an isomorphism by Lemma 2.5.16.

Now domL(αn) = domL(α). This can be seen by observing that for any endomor-
phism γ, gker(γn) = gker(γ) and gim(γn) = gim(γ). Similarly, domL(βn) = domL(β).
The underlying linear maps of L(r̄) and L(~r) are therefore equal. This shows that L(~r)
is also an isomorphism in Aut.

This proposition together with Theorem 2.5.13 shows that the following numerically
accessible version of the Conley index does not depend on the choice of an index pair
as was first shown in [Mro90b, Theorem 2.6].

Definition 2.5.18. Given an isolated invariant set S of a discrete dynamical system f
and an index pair (N , L) of S, we let the homological Conley index of (S, f ) be

CH∗(S, f ) := LeH∗( f(N ,L));

more precisely, its isomorphism class in Aut.

2.5.4 Shift equivalence in homology

One can also use the analog of the relation from Definition 2.5.8 on the linear map
eH∗( f(N ,L)).

Definition 2.5.19. Let α: V → V and β : W →W be endomorphisms of graded vector
spaces. They are shift equivalent if there are linear maps r : V →W and s : W → V and
an n ∈ N such that rα= β r, sβ = αs, rs = βn and sr = αn for some n ∈ N.

Theorem 2.5.20 ([MM02, Theorem 3.29], [Szy95, Lemma 4.3]). If (N , L) and (N ′, L′)
are two index pairs around the same isolated invariant set for a discrete dynamical system,
then eH∗( f(N ,L)) and eH∗( f(N ′,L′)) are shift equivalent.

Proof. This follows by applying the homology functor to the relations in Theorem 2.5.13.
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In the later chapters, we only apply these definitions to endomorphisms of finite-
dimensional vector spaces. In this special situation, the definition using shift equivalence
coincides with the definition using the Leray functor as is shown in [MM02]. We recall
the results from there, giving some more details.

Proposition 2.5.21 ([MM02, Prop. 3.30]). If V is finite-dimensional and α: V → V , then
α and L(α) are shift equivalent.

Proof. Since V is finite-dimensional, gker(α) = ker(αn) for some n > 0. Thus, the do-
main of L(α) is V/ker(αn). The map αn : V → V induces a unique map a : V/ker(αn)→
V making the upper triangle in the following diagram commute, where each horizontal
arrow is the quotient map:

V V/ker(αn)

V V/ker(αn)

αn L(α)na

The commutativity of the lower triangle follows directly from the definition of the Leray
functor.

Proposition 2.5.22 ([MM02, Prop. 3.31]). Two automorphisms are isomorphic in Aut if
and only if they are shift equivalent.

Proof. An isomorphism ~r : α→ β obviously yields a shift equivalence. For the opposite
direction, let α: V → V and β : W →W be shift equivalent automorphisms. Then there
are r : V →W and s : W → V such that

V W

V W

r

∼=αn βn∼=
s

r

commutes. Since sr = αn is an automorphism, r has a left inverse. Similarly, r has
a right inverse. By Lemma 2.5.16, r is an isomorphism, and hence ~r : α → β is an
isomorphism in Aut.

Theorem 2.5.23 ([MM02, Theorem 3.32]). Given two endomorphisms α and β of finite-
dimensional vector spaces, they are shift equivalent if and only if L(α)∼= L(β).

Proof. Assume that α and β are shift equivalent. Then, by Proposition 2.5.21, L(α) and
L(β) are shift equivalent. They are isomorphic in Aut because of Proposition 2.5.22.
The opposite implication follows from the same propositions.
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2.5.5 Digression: New approach via mapping torus

This subsection deals with an alternative definition of the Conley index for maps which is
not yet published. This definition is not used anywhere in the rest of this thesis. Instead
of using an equivalence relation on the index map, we propose defining the Conley
index for a map as the homotopy type of a certain space. This is also done in the usual
construction of the Conley index for a flow, cf. Definition 2.4.3. Here we introduce such
a definition hoping that it enriches our understanding of the Conley index. A publication
with more results than presented here is in preparation [Wei].

For a pointed continuous map ρ : P → P on some pointed topological space P, let
the (pointed) mapping torus be

T∗(ρ) :=
P o [0,1]

(x , 1)∼ (ρ(x), 0)
.

Its homotopy type depends only on the homotopy class of ρ [Ran87, Proposition 6.1(i)].
For an element (x ,θ ) ∈ Po[0, 1], its equivalence class in the mapping torus is denoted by
[x ,θ] ∈ T∗(ρ). We show in Theorem 2.5.26 that the following definition is independent
of the choice of an index pair. Let f : X → X be a continuous map, and let S ⊂ X be an
isolated invariant set for f .

Definition 2.5.24. The mapping torus index of (S, f ) is the pointed homotopy type of
T∗( f(N ,L)) for an index pair (N , L) of (S, f ).

For a pointed map ρ : P → P, consider the map

(P o [0, 1])o [0,∞)→ T∗(ρ),

((x ,θ ), t) 7→ [ρbt+θ c(x), t + θ − bt + θ c],

where b·c: R≥0→ N denotes the floor function, i.e., given t ≥ 0, the number btc ∈ N is
the largest natural number less than or equal to t. This map is continuous and induces
the continuous suspension semiflow

ϕρ : T∗(ρ)o [0,∞)→ T∗(ρ),

([x ,θ], t) 7→ [ρbt+θ c(x), t + θ − bt + θ c]

on the quotient space because

[ρbtc+1(x), t + 1− btc − 1] = [ρbtc(ρ(x)), t − btc].

The mapping torus is functorial in the following sense. Define the map

jρ : P → T∗(ρ), x 7→ [x , 0].

Given pointed maps ρ : P → P and σ : Q → Q and a pointed map r : P → Q such that
σr = rρ, let the induced map r# : T∗(ρ) → T∗(σ) be given by r#[x ,θ] = [r(x),θ].
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2.5. The Conley index for maps

This definition makes the following diagram commute.

P P T∗(ρ)

Q Q T∗(σ)

ρ

r r

jρ

r#

σ jσ

Lemma 2.5.25. If P =Q, ρ = σ and r = ρn for some n ∈ N, then the induced map ρn
# is

homotopic to the identity on T∗(ρ).

Proof. The suspension semiflow defines a homotopy because

idT∗(ρ)[x ,θ] = [x ,θ] = ϕρ([x ,θ], 0) and

ρn
#[x ,θ] = [ρn(x),θ] = ϕρ([x ,θ], n).

Theorem 2.5.26. The mapping torus index of (S, f ) is independent of the choice of an
index pair (N , L).

Proof. Let (N , L) and (N ′, L′) be index pairs for (S, f ). By Theorem 2.5.13, there are
maps r, s and a number n ∈ N such that

(i) r f(N ,L) = f(N ′,L′)r and s f(N ′,L′) = f(N ,L)s,

(ii) sr = f n
(N ,L) and rs = f n

(N ′,L′).

Then, using Lemma 2.5.25,

s#r# = (sr)# = ( f
n
(N ,L))# ' id,

similarly for r#s#. Therefore T∗( f(N ,L))' T∗( f(N ′,L′)).

The mapping torus index of the empty set is the one-point space because (∅,∅) is
an index pair and T∗(id{∗}) = {∗}. The mapping torus index for Example 2.5.3 is S1oS1.

A very similar approach using the unpointed suspension semiflow of f and then
the flow version of the Conley index has been presented in [Flo90, Section 2]. This
approach does not use the index map. How to use it for numerical computations is
unclear. Definition 2.5.24 seems to offer a link between this approach and the shift
equivalence definition in Subsection 2.5.2.

The numerical usefulness of our mapping torus definition is not yet clear. But since
the mapping torus is well-studied in algebraic topology, there are results about how to
compute invariants like homology and homotopy groups. A long exact sequence de-
scribing its homology groups via the homological index map is given in [Hat02, Exam-
ple 2.48]. The mapping torus is also a special kind of homotopy colimit. This property
seems helpful because results are often published in this more general context.
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Chapter 3

Rigorous numerics for dynamical
systems

In this chapter, we recall and apply established ideas for numerically finding the Con-
ley index of a flow inside an isolating neighborhood. Similar ideas were already used
in [Pil99]. The theoretical ideas are not difficult, but the practical implementation re-
quires choosing a discretization in time and in space as well as software for integrating
flows (we use [CAPD]). Whereas a finer discretization of the space is usually better, the
strategy for choosing the time step is less clear, as we show with an example.

3.1 Rigorous numerics for maps

We use some kind of time discretization of the flow. The main reason is that we can
numerically construct (weak) index pairs for a map, but not directly for a flow. It is
therefore very useful that we can apply algorithms developed for maps in order to find
properties of the given flow. Here we recall basic notions for combinatorially repre-
senting a discrete dynamical system on Rd using interval arithmetic.

An elementary interval I is an interval of the form I = [i] := [i, i] or I = [i, i + 1]
for some i ∈ Z. An elementary cube is a product of elementary intervals Q =

∏d
i=1 Ii =

I1×. . .× Id ⊂ Rd . The dimension dimQ is the number of intervals [i, i+1] in this product
and embQ := d its embedding number. The word cube usually refers to an elementary
cube in this thesis. For a set A of cubes having the same embedding number d, we let
|A|=

⋃

Q∈A Q ⊂ Rd be their geometric realization.
A k-dimensional elementary cube is called a k-cube. We often use special names

depending on dimension: a vertex is a 0-cube, an edge is a 1-cube, a square is a 2-cube,
and Q is a full cube if dimQ = embQ.

For a set X of full cubes, a multivalued combinatorial map F on X is a map from X to
its power set, i.e., for each Q ∈ X , F(Q) ⊂ X . This is written as F : X ⇒ X . For A ⊂ X ,
let F(A) =

⋃

Q∈AF(Q). For n ∈ N, inductively define Fn(A) via Fn+1(A) := F(Fn(A)),
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3.2. Cubical homology and cubical singular homology

and let F−n(A) := {Q ∈ X | Fn(Q) ∩A 6= ∅ }. One can also think of F as a directed
graph with vertex set X and an arrow from Q to P if P ∈ F(Q).

Let I ⊂ Z be an interval of integers containing 0. For a combinatorial multivalued
map F : X ⇒ X , a solution through Q ∈ X is a map Γ : I → X such that

(i) Γ (0) =Q, and

(ii) Γ (k+ 1) ∈ F(Γ (k)) whenever k, k+ 1 ∈ I .

Definition 3.1.1. For a set M ⊂ X , let

(i) Inv(M,F) = {Q ∈M | there is a solution Z→M through Q },
(ii) Inv±(M,F) = {Q ∈M | there is a solution Z±→M through Q }.

Obviously, Inv(M,F) = Inv−(M,F)∩ Inv+(M,F). The dynamics of a map f : X →
X with X = |X | can be captured as follows.

Definition 3.1.2. A map F : X ⇒ X is a global combinatorial enclosure of f : X → X if
f (Q) ⊂ int |F(Q)| for all Q ∈ X .

We do not require F to be optimal in any sense. The image F(Q) could be a very
coarse enclosure for f (Q). But a finer enclosure contains more precise information about
f . Variants of this definition like Definition 3.4.1 are suitable for numerical representa-
tions. The following is a simple observation from these definitions.

Lemma 3.1.3. Suppose F is a combinatorial enclosure of f .

(i) Given a solution γ: Z→ X of f through x ∈Q, then γ(n) ∈ Fn(Q) for all n ∈ Z.
(ii) For any N ⊂ X , Inv(|N |, f ) ⊂ |Inv(N ,F)|.

We want to apply the rigorous numerics presented here to flows. Given a flow ϕ,
we analyze the map

ϕh : X → X ,

x 7→ ϕ(x , h),

for a time step parameter h> 0.

3.2 Cubical homology and cubical singular homology

Our algorithms use cubical homology, a homology theory on sets of cubes. We recall
some notation and basic properties [KMM03,KMM04].

For d ≥ 1 and 0 ≤ n ≤ d, let Cd
n be the set of formal (finite) linear combinations

of the form c =
∑

i αiQ i , where αi ∈ F and Q i are cubes such that dimQ i = n and
embQ i = d. These cubes form the basis of Cd

n . Elements of Cd
n are called cubical chains.

For such a cubical chain c ∈ Cd
n , we let dim c = n and emb c = d be the dimension and

the embedding number of c, respectively.
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3.2. Cubical homology and cubical singular homology

• For c =
∑

i αiQ i ∈ Cd
n with Q i 6=Q j whenever i 6= j and Q an elementary cube, let

c(Q) :=

(

αi if Q =Q i for some i,

0 otherwise.

• The support of c is |c| :=
⋃

{Q | Q is a cube with c(Q) 6= 0 } ⊂ Rd .

An n-chain is an element of Cd
n for some d ≥ 1, a chain is an element of any Cd

n for
arbitrary n and d. The cubical product of two chains c1 and c2 with arbitrary dimensions
and embedding numbers is

c1 � c2 :=
∑

P,Q

c1(P)c2(Q) P ×Q,

where the formal sum is taken over all cubes P and Q. For example, P �Q = P ×Q,
where the cubes on the left are considered as chains and the product on the right is the
Cartesian product of two cubes.

We construct the boundary operator ∂ on chains by induction over the embedding
number of cubes. The cubes with embedding number 1 are precisely the intervals. To
define ∂ on C1

0 , let ∂ [i] = 0. To define ∂ on C1
1 , let ∂ [i, i + 1] = [i + 1] − [i]. For

embedding numbers greater than 1, we first use that given a cube Q with embQ > 1,
there are a unique interval J and a unique cube P such that emb P + 1 = embQ and
Q = J × P. We consider Q as a cubical chain and define its boundary operator as

∂Q := ∂ J � P + (−1)dim J J � ∂ P. (3.1)

This yields a definition of ∂ on the basis elements of Cd
n for all 0 ≤ n ≤ d. Extending

linearly, this yields linear maps ∂n : Cd
n → Cd

n−1, where ∂0 : Cd
0 → 0. One can show that

∂n−1∂n = 0. A useful implication of (3.1) is the following formula valid for arbitrary
chains c1 and c2:

∂ (c1 � c2) := ∂ c1 � c2 + (−1)dim c1 c1 � ∂ c2. (3.2)

Definition 3.2.1. A finite set of cubes X is a cubical complex if all cubes in X have the
same embedding number (denoted embX ) and it is downward closed under inclusion
in the following sense: If Q ∈ X , then every cube P ⊂ Q is an element of X . Given
a finite set Y of cubes, we call the smallest cubical complex containing Y the cubical
complex generated by Y.

Remark 3.2.2. We use this notion here in analogy to the notion of a simplicial complex.
The space |X | is refered to as a cubical set in [KMM03], but we avoid this notion here
because it is already used with a different meaning in combinatorial homotopy theory
where a cubical set is the cubical analog of a simplicial set (cf. [Kan55], [BHS11, Chap-
ter 11]).

Let A ⊂ X be cubical complexes with embA = embX = d. Let X n := {Q ∈
X | dimQ = n } be the n-cubes in X , and let Cn(X ) be the subspace of Cd

n gener-
ated by X n. The restriction of the boundary from above yields a well defined linear map
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3.2. Cubical homology and cubical singular homology

∂ X
n : Cn(X )→ Cn−1(X ). Let the vector space of relative n-chains of X modulo A be the

quotient vector space
Cn(X ,A) := Cn(X )/Cn(A),

on which the boundary operator on X induces a boundary operator

∂ (X ,A)
n : Cn(X ,A)→ Cn−1(X ,A),

z + Cn(A) 7→ ∂ X
n (z) + Cn−1(A).

The vector space Zn(X ,A) := ker∂ (X ,A)
n is the space of relative n-cycles, its subspace

Bn(X ,A) := im∂ (X ,A)
n+1 contains the relative n-boundaries.

We call the quotient Hn(X ,A) = Zn(X ,A)/Bn(X ,A) the n-th cubical homology of
(X ,A). It fulfills the axioms of homology from Section 2.3, as is shown in [KMM04].

Cubical singular homology

In the proofs of Section 4.1, we need to work explicitly with the chains representing
singular homology. We recall the singular homology theory which is closest to cubical
homology: Cubical singular homology as presented in [Mas91]. We let In := [0, 1]n ⊂
Rn with I0 := [0]. For a topological space X , a singular n-cube is a continuous map
T : In→ X . We define the following inclusions fi , bi : In−1→ In for each 1 ≤ i ≤ n. For
x ∈ In−1, let

fi(x1, . . . , xn−1) = (x1, . . . , x i−1, 0, x i , . . . , xn−1) (front),

bi(x1, . . . , xn−1) = (x1, . . . , x i−1, 1, x i , . . . , xn−1) (back).

We denote the vector space with basis consisting of all cubical singular n-cubes by CS
n (X ),

the cubical singular n-chains. We let ∂ S
n : CS

n (X )→ CS
n−1(X ) be defined on this basis by:

∂ S
n (T ) =

n
∑

i=1

(−1)i(T ◦ fi − T ◦ bi).

From this, we construct the cubical singular homology H∗(X ) using quotient spaces anal-
ogously to the definition of cubical homology above.

Given a cubical complex X , we let X = |X | and d = embX . A chain in Cn(X ) is a
singular chain in CS

n (X ) in the following way. For an elementary cube Q =
∏d

i=1[li , ri]
with dimQ = n, let σ : {1, . . . , n} → {1, . . . , d} be the increasing map such that ri = li+1
if and only if i ∈ imσ. Then rσ( j) = lσ( j) + 1 for all j, and ri = li if i /∈ imσ. We get a
map αn(Q): In→ X ⊂ Rd via

(αn(Q)(t1, . . . , tn))i =

(

li if ri = li ,

li + tσ−1(i) if ri = li + 1.
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3.3. Isolating neighborhoods

We get a chain map α∗ : C∗(X ) → CS
∗ (X ), i.e., ∂ S

n ◦ αn = αn−1 ◦ ∂ X
n for each n. For

example, α1([0, 1])(t) = t and then ∂ S
1 α1([0,1]) = α0([1])− α0([0]). This chain map

induces a linear map H∗(α∗): H∗(X )→ H∗(X ).
It is a classical result of algebraic topology that cubical singular homology is iso-

morphic (for every topological space) to the more commonly used simplicial singular
homology [EML53].

A comparison between singular and cubical homology is sketched in [KMM04, Chap-
ter 11]. Here we only cite that given cubical complexes A ⊂ X , there is a natural iso-
morphism of graded vector spaces between cubical homology and singular homology,
i.e.,

H∗(X ,A)∼= H∗(|X |, |A|).

3.3 Isolating neighborhoods

The following theorem is essential for our approach using a discrete dynamical system
as a tool to analyze the flow ϕ.

Theorem 3.3.1 ([Mro90a, Theorem 1]). Let S ⊂ X be compact. Then the following three
conditions are equivalent:

(i) S is an isolated invariant set with respect to ϕ.

(ii) For every h> 0, S is an isolated invariant set with respect to ϕh.

(iii) There is a number h> 0 such that S is an isolated invariant set with respect to ϕh.

This theorem tells us that given h > 0, the dynamical systems ϕ and ϕh have the
same isolated invariant sets. More precisely, if S is isolated invariant for ϕ, then it is
isolated invariant for ϕh due to (i) =⇒ (ii). And if S is isolated invariant for ϕh, then
it is isolated invariant for ϕ because of (iii) =⇒ (i).

The following observation about isolating neighborhoods is interesting because iso-
lating neighborhoods can often be represented numerically.

Corollary 3.3.2 ([Pil99, Lemma 6]). Given an h > 0 and an isolating neighborhood
M ⊂ X for ϕh, then

Inv(M ,ϕ) = Inv(M ,ϕh).

Proof. The inclusion Inv(M ,ϕ) ⊂ Inv(M ,ϕh) holds trivially for any set M ⊂ X . For the
opposite inclusion, we use that the set Inv(M ,ϕh) is isolated invariant for ϕh by assump-
tion. Using (iii) =⇒ (i) from the theorem, it is invariant for ϕ, hence Inv(M ,ϕh) ⊂
Inv(M ,ϕ).

Remark 3.3.3. If M is just an isolating neighborhood for the flow ϕ, the invariant sets
Inv(M ,ϕ) and Inv(M ,ϕh) need not be equal. For example, let X = R2, and let ϕ be the
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3.4. Showing isolation numerically
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FIGURE 3.1: The left subfigure shows a phase portrait of the dynamical system in Re-
mark 3.3.3. The right subfigure shows the limit cycle, the rectangle M (blue region) and
the set Inv(M ,ϕh), the union of two closed sectors (hatched region). The black point
marks Inv(M ,ϕ) = {0}, the points filled white constitute the set Inv(M ,ϕπ)∩ bd M .

flow generated by the following ordinary differential equation:

ẋ1 = −x2 + x1(1− x2
1 − x2

2)

ẋ2 = x1 + x2(1− x2
1 − x2

2)

The dynamical system has an equilibrium at the origin. The unit circle is an attracting
limit cycle. All points except the equilibrium (0, 0) are attracted by it. This can be seen
directly by using polar coordinates (r,θ ) with r2 = x2

1 + x2
2 , tanθ = x2/x1. This yields

ṙ = r(1− r2) and θ̇ = 1. A solution on the limit cycle is given by t 7→ (cos t, sin t). Figure
3.1 shows some trajectories. If we choose M = [−1, 1] × [−0.5, 0.5] and h = π, then
Inv(M ,ϕπ) intersects the boundary of M , and Inv(M ,ϕ) = {0} ( Inv(M ,ϕπ); details
are shown in the figure.

3.4 Showing isolation numerically

We reuse and slightly adapt notions from Section 3.1 for the problem of showing that a
given set of full cubes forms an isolating neighborhood for ϕh.

Given d > 0 and a tuple s ∈ Rd
>0 representing a box size, the space X = Rd is the

union of the following full cubes:

X =

¨ d
∏

i=1

[misi , (mi + 1)si]

�

�

�

�

�

m ∈ Zd

«

.

Let K ⊂ X be a finite subset. Our goal is to describe ϕh (and in a certain sense ϕ) within
K = |K|.
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3.4. Showing isolation numerically

For subsets Z ⊂ K ⊂ Rd , we let intK(Z) be the interior of Z with respect to the sub-
space topology of K ⊂ Rd , the union of all sets which are open in K and subsets of Z . We
use the following restricted version of a combinatorial enclosure (cf. Definition 3.1.2).

Definition 3.4.1. A map F : K⇒ K is a restricted combinatorial enclosure of f : Rd → Rd

if for every Q ∈ K: f (Q)∩ K ⊂ intK |F(Q)|.

Note that F(Q) =∅ is allowed if f (Q)∩K =∅. For a global combinatorial enclosure
G, we would have G(Q) 6=∅ for all cubes Q. For a set A ⊂ K, define

WRAP(A) := {Q ∈ K |Q ∩ |A| 6=∅} . (3.3)

We construct a restricted combinatorial enclosure F : K ⇒ K of ϕh : Rd → Rd . For
each Q ∈ K, we use the software library [CAPD] to find a set V ⊂ Rd such that ϕ(Q, h) ⊂
int(V ). We use higher-order Taylor methods. The algorithms used by us are described
in [NJ01], [WZ11], and [Zgl08]. We let F(Q) := { P ∈ K | P ∩ V 6=∅ }.

It is now straightforward to check that F fulfills Definition 3.4.1: First note that
ϕh(Q) ∩ K ⊂ int(V ) ∩ K . The set int(V ) ∩ K is open in K and a subset of |F(Q)|. It is
therefore a subset of intK |F(Q)|.

Let M ( K be such that M = |M| ⊂ int K . In order to show that M is an isolating
neighborhood, we want to show algorithmically that

WRAP(Inv(M,F)) ⊂M,

which then implies |Inv(M,F)| ⊂ int M . This suffices because Inv(M ,ϕh) ⊂ |Inv(M,F)|
by Lemma 3.1.3.

In order to compute Inv(M,F), we proceed as in [Mro06]: We consider the multi-
valued map FM : M⇒M defined by FM(Q) := F(Q)∩M. Then

M ⊃ FM(M) ⊃ F2
M(M) ⊃ . . . and M ⊃ F−1

M (M) ⊃ F−2
M (M) ⊃ . . . (3.4)

Since we work with finite sets of cubes, there is a smallest m ∈ N with Fm
M(M) =

Fm+1
M (M). We construct the left descending sequence of subsets in (3.4) by applying FM

repeatedly until the set of cubes does not change. Now, [Mro06, Theorem 6.13] tells
us that Fm

M(M) = Inv−(M,F), cf. Definition 3.1.1. Similarly, Inv+(M,F) = F−n
M (M)

for the smallest n ∈ N with F−n
M (M) = F−n−1

M (M). After computing these combinato-
rial versions of positive and negative invariant sets, we use the fact that Inv(M,F) =
Inv−(M,F)∩ Inv+(M,F).

There is often a wide range of good choices for the parameter h in the algorithm.
But the runtime of the algorithm can become quite large if either h is very small or h is
close to a value where M is not an isolating neighborhood for ϕh.

Example 3.4.2. Using a good choice for h, one can analyze the van der Pol oscillator, a
well-known second order differential equation in one dimension, here considered as a
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FIGURE 3.2: The left subfigure shows a phase portrait of the van der Pol equations for
µ = 2. The right subfigure shows the construction of Inv(M,F) given M as described
in Example 3.4.2. Both colored areas together constitute M after several iterations. It
consists of (142 − 4) · 45 = 196608 cubes. The green area is the subset Inv(M,F).

two-dimensional ordinary differential equation:

ẋ1 = x2

ẋ2 = −x1 +µ(1− x2
1)x2

We applied the method described to these equations with µ = 2, using h = 0.1 as
a parameter. A plot of some trajectories is shown in Figure 3.2. It is well known that
the van der Pol equations have a limit cycle for µ > 0 [Tes12, Chapter 7]. We started
with a candidate K that was a subdivision of the rectangle [−3, 3]× [−6,6] into 16 · 16
rectangles. We let M be K without the cubes touching the boundary. Then we removed
the four rectangles around (0, 0) from M in order to remove this equilibrium.

After subdividing thisM five times (every time subdividing each box into 4 boxes and
computing Inv(M,F) for the subdivided set M), the statement WRAP(Inv(M,F)) ⊂M
was true for the first time, as can be seen in Figure 3.2. Our implementation took 215
seconds to run. Most of the time was used for building the map F and then the set
Inv(M,F) at each subdivision step. Note that M was only a very coarse enclosure of
the invariant set. We also used F to construct a weak index pair as in Section 3.6.
Letting S = Inv(M ,ϕ), we got a Conley index of CH0(S,ϕ) = F, CH1(S,ϕ) = F and
CHn(S,ϕ) = 0 for n> 1.

3.5 An example with good and bad time step choices

We tried to verify that a given set M is an isolating neighborhood using the differential
equation from Remark 3.3.3. As the set M we chose the 12 boxes depicted in Figure 3.3.
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FIGURE 3.3: Good and bad choices of h as described in Section 3.5. The set M consists
of the filled blue boxes on the left. For h = π/6, the marked points lying on the
boundary of M constitute an orbit of period 12 for ϕh. The points marked white also
lie in Inv(M ,ϕh) for h= π/4 (with period 8, their orbits are not drawn).

Each cube has a size of s = (0.5,0.5). Our algorithm builds F repeatedly on finer
subdivisions of M. It was run for h from 0.005 to 1.000 incrementing by 0.005. The
set M = |M| is an isolating neighborhood for ϕ because each point in M \ {(0,0)} is
attracted by the limit cycle and hence leaves M in forward time. It is not, however, an
isolating neighborhood for ϕh for every h> 0.

For certain time steps h, there can be points on the boundary of M whose orbits do
not leave M . In our example, M is not an isolating neighborhood for ϕπ/6. Hence, when
h is close to π/6, the combinatorial enclosure F of ϕh has to be very fine to recognize
the isolation. This leads to high runtimes around h = π/6. Another problem that can
occur for any M: For very small h, the map ϕh is close to the identity. This implies that
the combinatorial map F has a lot of cubes Q with Q ∈ F(Q), therefore Q ∈ Inv(M,F).
If this happens for a box Q on the boundary of M, then

WRAP(Inv(M,F)) ⊂M is false,

hence the algorithm subdivides further. This leads to the jumps in runtimes visible in
Figure 3.3. An example where all choices for h lead to bad output is presented in Sec-
tion 5.4.

3.6 Computing the Conley index

In this section, we summarize how we can use the combinatorial enclosure F of ϕh

constructed above to compute the Conley index of the isolated invariant set inside |M|.
These established ideas are later modified:
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3.6. Computing the Conley index

• In Chapter 4, we work with a map for which we usually cannot construct a com-
binatorial enclosure: the Poincaré map P.

• In Chapter 5, we consider another way of discretizing ϕ in time. This helps in
finding finer (smaller) isolating neighborhoods and is motivated by examples like
the one in Section 3.5.

The following theorem explains that given an isolated invariant set S for ϕh, the
Conley index of (S,ϕh) immediately gives us the Conley index of (S,ϕ). A more general
version, Theorem 5.2.3, is proved in Chapter 5.

Theorem 3.6.1 ([Mro90a, Theorem 2]). Let S be an isolated invariant set for ϕh. Let
(N , L) be an index pair for (S,ϕh) and I(N ,L) = eH∗((ϕh)(N ,L)) its homological index map.
Then there is an isomorphism

CH∗(S,ϕ)∼= domL(I(N ,L)).

This theorem was already used with the algorithmic ideas presented here in [Pil99];
a recent survey is [AKP09].

There are several ways for constructing an index pair given a combinatorial enclo-
sure F . Our approach presented in Example 3.4.2 uses the isolating neighborhood M
as input (as we also do in Chapter 4). In this case, the approach from [Mro06] seems
most useful.

Assume we have a restricted combinatorial enclosure F : K→ K of f and we have
already shown numerically that WRAP(Inv(M,F)) ⊂M.

Then we let N = Inv−(M,F) and L = N \ Inv+(M,F) (cf. Definition 3.1.1).
By [Mro06, Theorems 7.3 and 8.1], the pair of spaces (|N |, |L|) is a weak index pair
for (Inv(M , f ), f ).

In order to compute the homological index map, we need an extra assumption: We
assume f (M) ⊂ int K . This can be assured by making M much smaller than K and
finding a rigorous numerical enclosure of f (M). Then we get f (Q) ⊂ int |F(Q)| for
each Q ∈ M, and therefore f (N) ⊂ int |F(N )|. Now let N = N ∪ F(N ) and L =
L∪(F(N )\N ). We get F(N ) ⊂N and F(L) ⊂ L. Define N := |N |, L := |L|. By [Mro06,
Theorem 8.1], the map

fP : (N , L)→ (N , L), x 7→ f (x),

and the inclusion i : (N , L) ,→ (N , L) induce the following analog of Diagram (2.2) (note
that we only have a weak index pair this time):

H∗(N , L) H∗(N , L) H∗(N , L)

eH∗(N/L) eH∗(N/L).

q∗∼=

fP∗

q∗∼=

i∗
∼=

eH∗( f(N ,L))

(3.5)
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3.6. Computing the Conley index

We have descriptions of fp and i as multivalued combinatorial maps, and use the
approach from [MMP05] to compute the induced maps in relative homology.

Our numerical experiments show that beginning with a given flowϕ, after construct-
ing the weak index pair (N , L) for f = ϕh, the homological index map eH∗( f(N ,L)) is often
the identity. In Lemma 5.2.2, we show that such a pair (N , L) exists for every isolated
invariant set. But, unfortunately, there is no obvious way to ensure this extra property
during construction. Therefore, computing I(N ,L) cannot easily be avoided, even if f has
the special form f = ϕh.

In Chapter 4, this approach is not used. There we construct an index pair for some
ϕh, but it is not an index pair for the Poincaré map (the one we are interested in).
Computing the Conley index the way described here is used in Chapter 5.
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Chapter 4

The Conley index for Poincaré maps

In this chapter, we describe a rigorous numerical way of finding the Conley index for a
special kind of Poincaré map. Assume we are given a function f : R × Rd → Rd such
that the resulting non-autonomous ordinary differential equation (ODE)

ẋ = f (t, x) (4.1)

has unique solutions in the following sense. We assume that the ordinary differential
equation

ṫ = 1,

ẋ = f (t, x).

on the extended phase space Ω := R×Rd = Rd+1 induces a flow

ψ: Ω×R→ Ω.

This situation occurs if f ∈ C1(Rd+1,Rd). We only assume that ψ is a global flow for
the ease of presentation, cf. Section 2.1. Additionally, we assume that there is a real
number T > 0 such that

f (t + T, x) = f (t, x) for all x ∈ Rd .

We divide R by the action of the additive subgroup TZ ⊂ R, identifying t and t ′ if
t − t ′ = nT for some n ∈ Z. We let 〈t〉 := t + TZ be the orbit of t ∈ R under this action.
Let

Σ := R/TZ×Rd

and

q : Ω→ Σ,

(t, x) 7→ (〈t〉, x).
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CHAPTER 4. THE CONLEY INDEX FOR POINCARÉ MAPS

Since f is periodic, we get the following well-defined flow on the quotient space:

ϕ : Σ×R→ Σ,
�

(〈t〉, x), s
�

7→ q
�

ψ((t, x), s)
�

.

This flow has a Poincaré map

P ′ : 〈0〉 ×Rd → 〈0〉 ×Rd ,

(〈0〉, x) 7→ ϕ
�

(〈0〉, x), T
�

,

Sometimes, we want to consider this a map on Rd , so we let

P : Rd → Rd ,

x 7→ πd P ′(〈0〉, x),

where we let

πd : Σ→ Rd ,

(〈t〉, x) 7→ x

be the projection to the last d factors.
We refer to both P and P ′ as the Poincaré map, and from now we also simply use

the letter P to denote P ′ without fear of confusion. This is the standard definition of
Poincaré maps when analyzing differential equations of this form [Tes12, Section 1.6].
The Poincaré map contains information about solutions of the differential equation. For
example, if we find an n ∈ N with Pn(x) = x , then (〈0〉, x) = ϕ((〈0〉, x), nT ), i.e.,
Equation (4.1) has a periodic orbit through x with period nT .

Isolated invariant sets for ϕ and P are deeply related as the following proposition
shows. The equivalence of the first three conditions follows simply from Theorem 3.3.1.

Proposition 4.0.2 ([MSW15, Proposition 4.1]). Let S ⊂ Σ. For t ∈ [0, T ), let

St := S ∩ (〈t〉 ×Rd).

Then the following statements are equivalent:

(i) S is an isolated invariant set for ϕ.

(ii) S is an isolated invariant set for ϕh for all h> 0.

(iii) S is an isolated invariant set for ϕh for some h> 0.

(iv) S0 is an isolated invariant set for the Poincaré map P and St = ϕ(S0) for every
t ∈ [0, T ).

The mathematical object we want to compute in this chapter is CH∗(S0, P) as in
Definition 2.5.18 for an isolated invariant set S of ϕ.
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4.1. Some notation and definitions

The theoretical results needed for its rigorous algorithmic computation are formu-
lated and proved in [MSW15]. In Section 4.1, we introduce the basic notions which
allow us to encode dynamical information as geometrical properties of cubes and cubi-
cal chains. Section 4.2 presents the central theoretical result from this article and we
sketch its proof. Beginning with Section 4.3, these theoretical results are applied to de-
velop the central algorithm. This was done by the author of this thesis and is described
in detail.

4.1 Some notation and definitions

Given a subdivision parameter m ≥ 1, the extended phase space Σ = R/TZ × Rd is
covered as follows. Let

X =

¨

[ j, j + 1]×
d
∏

i=1

[ki , ki + 1]

�

�

�

�

�

0≤ j < 2m, ki ∈ Z

«

.

To cover a bounded region, we choose s1, . . . , sd with each si > 0 and define

α: |X | → Ω= R×Rd ,

(x0, . . . , xd) 7→
�

T ·
x0

2m
, s1

� x1

2m−1
− 1

�

, . . . , sd

� xd

2m−1
− 1

��

.
(4.2)

We let p := q ◦ α. Note that α([0,2m]d+1) = [0, T] × [−s1, s1] × . . . × [−sd , sd] and
p(|X |) = Σ.

|X | Ω

Σ

α

p
q

Definition 4.1.1. For a set A of cubes, let

¹Aº := p(|A|) =
⋃

Q∈A
p(Q) ⊂ Σ

be its geometric realization.

Observe that ¹A∪Bº= ¹Aº∪¹Bº and ¹A∩Bº ⊂ ¹Aº∩¹Bº for arbitrary sets A,B
of cubes.

The geometric realization of a chain c is ¹cº := p(|c|).
We call a 1-chain c ∈ C1(A) a path if there are x , y ∈A0, x 6= y , such that ∂ c = x− y.

For an elementary cube Q = I0× I1× . . .× Id , we let Ii(Q) := Ii for 0≤ i ≤ d. Removing
the first factor is denoted by πd , i.e.,

πd(Q) := I1(Q)× . . .× Id(Q) ⊂ Rd .

This enables us to denote subsets and subchains with the time component lying inside
a given interval.
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4.1. Some notation and definitions

• For an elementary interval I , let

AI := {Q ∈A | I0(Q) ⊂ I}.

Based on this, we introduce similar notation for intervals which are not closed:
Given i, j, k ∈ Z, we let A[ j,k) := A[ j,k] \A[k], A( j,k] := A[ j,k] \A[ j] and A( j,k) :=
A[ j,k) \A[ j].

• For a chain c =
∑

i αiQ i ∈ Ck(A) and I be of the form [ j, k], [ j, k), ( j, k] or ( j, k),
we let cI :=

∑

Q∈AI
c(Q)Q ∈ Ck(AI).

• Define πd(c) :=
∑

i αiπd(Q).

From here, assume that Ld+1 ⊂ N d+1 are finite sets of full cubes such that their
geometric realization (¹N d+1

º,¹Ld+1
º) is a weak index pair. Now let N be the cubical

complex generated by N d+1, cf. Definition 3.2.1. Let N = ¹N d+1
º = ¹Nº ⊂ Σ. In

an analogous way, we define L and L. We are interested in the relative homology of
(N0, L0), where N0 = {(〈0〉, x) ∈ N} and analogously for L. But not necessarily N0 =
¹N[0]º. We only know that ¹N[0] ∪ N[2m]º= N0.

In order to compute H∗(N0, L0) correctly, we add sets of cubes
¨

[0]×
d
∏

i=1

Ii

�

�

�

�

�

[2m]×
d
∏

i=1

Ii ∈N

«

and

¨

[2m]×
d
∏

i=1

Ii

�

�

�

�

�

[0]×
d
∏

i=1

Ii ∈N

«

to N . Then ¹N[0]º= ¹N[2m]º= N0 and still ¹Nº= N . We do the same for L.
We want to describe the relative chains from Section 3.2 in terms of “absolute”

chains. Let
Z i

n := {u ∈ Cn(N[i]) | ∂nu ∈ Cn−1(L[i]) }.

A chain u ∈ Z i
n represents a class of chains u+ Cn(L[i]) ∈ Zn(N[i],L[i]). We also call the

elements of Z i
n cycles. In the following two definitions, let i, j ∈ {0, . . . , 2m}, u ∈ Z i

n and
v ∈ Z j

n.

Definition 4.1.2. The pair (u, v) is a pair of contiguous cycles if there are chains w ∈
Cn+1(N[i, j]) and z ∈ Cn(L[i, j]) such that

∂ w= u− v + z.

A simple example of contiguous cycles in the case d = 1 is shown in Figure 4.1. The
following property cannot be seen from the figure because it requires knowledge about
the behavior of ϕ over a whole time interval.

Definition 4.1.3. A pair (u, v) of contiguous cycles is called h-movable if there are w
and z as in Definition 4.1.2 such that ϕ(¹wº, [0, h]) ⊂ ¹Nº and ϕ(¹zº, [0, h]) ⊂ ¹Lº.

A simple observation is the following lemma.

Lemma 4.1.4. Let (u, v) and (v, v′) be pairs of contiguous cycles. Then:

(i) (u, v′) is a pair of contiguous cycles.

(ii) If (u, v) and (v, v′) are h-movable, then (u, v′) is h-movable.
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4.2. The main theorem and a sketch of its proof

u v

z[n]
z−

z+

w

0 n 2m

p
−→ 0

x

[t]

Σ

FIGURE 4.1: A simple example where d = 1 and the flow ϕ is induced by a vector field
f : R×R1→ R1 with f (t, 0) = 0 and f (t, x) · x > 0 for x 6= 0. The invariant set S of ϕ
is the periodic orbit at x = 0. In the left figure, the blue set is |L| ⊂ R2; the blue set in
the right figure is ¹Lº ⊂ Σ= R/TZ×R1, similarly for N , the union of the red and blue
cubes. The left figure shows cubical chains with ∂ w= u− v + z+ − z−.

4.2 The main theorem and a sketch of its proof

Given a finite-dimensional vector space V , a basis B of V and a linear map α: V → V , let
MB(α) be the matrix (ai j) such that α(v j) =

∑

i ai j vi for all v j ∈ B. In the context of the
Conley index, the choice of a basis B often does not matter. We let M(α) be the set of all
matrices A such that there is a basis B of V with A= MB(α). It is a central result in linear
algebra that given A, A′ ∈ M(α), there is an invertible matrix T such that A = T−1A′T .
Two linear maps α,β are isomorphic in End if and only if M(α)∩M(β) 6=∅.

We need to shift a cubical chain by increasing the time coordinate in the following
way. For u ∈ Cn(N[0]), let

ū := [2m]×πd(u) ∈ Cn(N[2m]).

Let S := Inv(cl(N \ L),ϕh). By Proposition 4.0.2, S0 is an isolated invariant set for
the Poincaré map P.

Theorem 4.2.1 ([MSW15, Theorem 4.5]). Let T/h ∈ Q and n ∈ N. Given a basis B =
([u1], . . . , [uk]) of Hn(N[0],L[0]) and a (k× k)-matrix A= (ai j) such that

�

u j ,
k
∑

i=1

ai j ūi

�

for j = 1, . . . , k

are h-movable pairs of contiguous cycles, and let α be an endomorphism with A ∈ M(α).
Then CHn(S0, P)∼= L(α).
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4.2. The main theorem and a sketch of its proof

For example, if A in Theorem 4.2.1 is an invertible matrix, then the Conley index is
represented by any matrix similar to A.

Remark 4.2.2. A similar theorem is [MS10, Theorem 6.3], where one assumes that N is
an isolating block for the flow ϕ. Isolating blocks for flows are hard to find numerically,
whereas there are good algorithms constructing index pairs for maps. The cost we pay
here is that the proof becomes harder.

Also note that Hn(N[0],L[0]) = 0 for n > d. Therefore, the Lefschetz number of
CH∗(S0, P) in the following corollary is a finite sum. Let tr A denote the trace of a matrix
A.

Corollary 4.2.3 ([MSW15, Corollary 4.8]). If each matrix An represents the Conley index
CHn(S0, P) as in Theorem 4.2.1 and

d
∑

n=0

(−1)n tr An 6= 0,

then P has a fixed point.

We sketch the proof presented in [MSW15, Section 5.2]. The purpose of this sketch
is to give an idea where the assumptions of Theorem 4.2.1 and Proposition 2.5.17 are
used. Additionally, it might help the reader decide whether or not to read the detailed
proof. The rest of this section is not used anywhere else in this thesis.

From the given weak index pair (N , L), a certain strong index pair (N ∗, L∗) (usually
not a pair of cubical complexes) for (S,ϕh) is defined. Since T/h ∈Q, there are p, q ∈ N
such that ph= qT .

Then another pair of spaces (N ∗∗, L∗∗) is constructed with N ∗∗ \ L∗∗ = N ∗ \ L∗ and
N ∗∗/L∗∗ = N ∗/L∗. It is a weak index pair for (S,ϕτ) for every τ ∈ (0, T] and, as shown
in [MSW15, Lemma 5.11],

(ϕτ)(N∗∗,L∗∗)(〈t〉, x) =

(

ϕτ(〈t〉, x) if ϕ((〈t〉, x), [0,τ]) ⊂ N ∗∗ \ L∗∗,

∗ otherwise.
(4.3)

Additionally, (N ∗∗0 , L∗∗0 ) is a weak index pair for (S, P) and, using (4.3) for τ = T , its
index map with respect to the Poincaré map P is described by

P(N∗∗0 ,L∗∗0 )
(x) =

(

P(x) if ϕ((〈0〉, x), [0, T]) ⊂ N ∗ \ L∗,

∗ otherwise.

In order to get a description of L(P(N∗∗0 ,L∗∗0 )
), we are working towards applying Proposi-

tion 2.5.17. For i ∈ N and a subset A⊂ Σ, let

Ai := {(〈ih〉, x) ∈ A}.

44



4.2. The main theorem and a sketch of its proof

This enables us to define

Ψi : N ∗i /L∗i → N ∗i+1/L∗i+1,

(〈ih〉, x) 7→

(

ϕ((〈ih〉, x), h) if (〈ih〉, x), ϕ((〈ih〉, x), h) ∈ N ∗ \ L∗,

∗ otherwise.

Now we compose these maps to reach 〈ph〉= 〈qT 〉= 〈0〉 ∈ R/TZ. We let

Ψ := Ψp−1 ◦ . . . ◦Ψ0 : N ∗0/L∗0→ N ∗0/L∗0.

From (4.3) for τ= h, we get that

Ψi(〈ih〉, x) =

(

ϕ((〈ih〉, x), h) if ϕ((〈ih〉, x), [0, h]) ⊂ N ∗ \ L∗,

∗ otherwise.

This shows:

Lemma 4.2.4 ([MSW15, Lemma 5.15]).

Ψ = Pq
(N∗∗0 ,L∗∗0 )

.

We want to describe Ψ in terms of A. Let

κ: N ∗0/L0→ N ∗0/L∗0

be induced by the inclusion L0 ⊂ L∗0. One defines Ψ′ similarly to Ψ, but on N ∗0/L0, and
gets a commutative diagram

N ∗0/L0 N ∗0/L∗0

N ∗/L0 N ∗0/L∗0.

κ

Ψ′ Ψ

κ

(4.4)

Without going into detail, we use that the support of each cubical n-chain ui is con-
tained in N ∗0 . Now we consider each ui a cubical singular chain (as in Section 3.2),
and by composing this map ui : [0,1]n → N ∗0 with the quotient map N ∗0 → N ∗0/L0, it
represents an element eui ∈ eHn(N ∗0/L0). One can show that these chains are linearly
independent. Let V be the vector space with basis B = (eu1, . . . ,euk). Now let α: V → V
be such that A = MB(α). We skip the proofs of the following two lemmas, where the
movability assumption is used.

Lemma 4.2.5 ([MSW15, Lemma 5.14]). For 1≤ i ≤ k,

eHn(Ψ
′)(eui) = α

q(eui).
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4.3. The numerical representation

Let r be the restriction of eHn(κ) to the domain V .

Lemma 4.2.6 ([MSW15, Lemma 5.13]). The diagram

V eHn(N ∗0/L∗0)

V eHn(N ∗0/L∗0)

r

α eHn(P(N∗∗0 ,L∗∗0 )
)

r

commutes.

Now one can show that there are a linear map s and a number k∗ ∈ N such that the
diagram

V eHn(N ∗0/L∗0)

eHn(N ∗0/L0) eHn(N ∗0/L∗0)

r

αqk∗
eHn(Ψk∗ )

s

eHn(κ)

(4.5)

commutes. We apply the reduced homology functor eHn to (4.4). There is a number k for
which im(eHn(Ψ′)k) ⊂ V [MSW15, Lemma 5.16]. We put the resulting diagram below
Diagram 4.5 to see that the following diagram commutes, where we use Lemma 4.2.5
on the left and Lemma 4.2.4 on the right.

V eHn(N ∗0/L∗0)

eHn(N ∗0/L0) eHn(N ∗0/L∗0)

V eHn(N ∗0/L∗0)

r

αqk∗

αqk∗+qk

eHn(Ψ)k
∗s

eHn(P(N∗∗0 ,L∗∗0 )
)qk∗+qk

eHn(κ)

eHn(Ψ′)k eHn(Ψ)k

r

We can finally apply the criterion from Proposition 2.5.17 and get Theorem 4.2.1.

4.3 The numerical representation

In this section and the following one, we present the algorithm used to check the pre-
requisites of Theorem 4.2.1. The algorithm is based on the rigorous construction of a
weak index pair (N , L) of ϕh as in [Mro06]. The index pair is represented by elementary
cubes. An implementation is available on the author’s homepage [web].

The algorithm constructs 1-chains z and v, and a 2-chain w as linear combinations
of elementary cubes. In the course of their construction, the algorithm has to ensure the
movability condition. We go on using the notation from Section 4.1.
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4.3. The numerical representation

Discretizing the generator of the dynamical system

We start with an appropriate variation of Definition 3.1.2.

Definition 4.3.1. Given a continuous map f : Σ→ Σ, the map F : X ⇒ X is a combina-
torial enclosure of f if, for every Q ∈ X , f (p(Q)) ⊂ int¹F(Q)º.

Given a product V ⊂ Ω of closed intervals (an interval vector) and an interval J ⊂
[0,∞), we use the software library [CAPD] to find an interval vector V ′ ⊂ Ω such that
ψ(V, J) ⊂ int(V ′). We use the same methods as mentioned in Section 3.4.

Given an elementary cube Q (not necessarily full) with Q ⊂ |X |, α(Q) as defined in
(4.2) is an interval vector in Ω. Given a time interval J ⊂ [0,∞), the aforementioned
methods for rigorous numerics compute an interval vector E ⊂ Ω such thatψ(α(Q), J) ⊂
int(E). Then we represent q(E) ⊂ Σ as a set of cubes in X as follows:

Φ(Q, J) := {Q′ ∈ X | p(Q′)∩ q(E) 6=∅} ⊂ X ,

which could be infinite because E does not need to be bounded. Then ϕ(p(Q), J) ⊂
int¹Φ(Q, J)º. Let F J denote the restriction of Φ(−, J) to full cubes in X . Then F J : X ⇒
X is a combinatorial enclosure of ϕt for every t ∈ J . When checking the conditions of
Theorem 4.2.1, we use the intervals J = [h, h], having length zero, and J = [0, h]. Our
algorithm operates on this finite set of full cubes:

K := {[i, i + 1]× [ j, j + 1]× [k, k+ 1] | i, j, k ∈ {0, 1, . . . , 2m − 1}} ⊂ X .

The dynamics of ϕ(·, J) which we are interested in is represented numerically by the
function COVER, defined for a cube Q of arbitrary dimension:

COVER(Q, J) := Φ(Q, J)∩K.

Remark 4.3.2. The function COVER is the only method through which our algorithm
receives information about the dynamical system. This means:

(i) Our algorithm does not only work with the CAPD software library. One could use
any numerical integrator in the function Φ as long as ϕ(p(Q), J) ⊂ int¹Φ(Q, J)º
for each cube Q. Since the precise formula of the ODE is only used within Φ (we
parse it from a string), one could even work without an explicit formula as long
as one is able to construct such an enclosure Φ(Q, J).

(ii) The algorithm does not get any information about ϕ(¹Qº, J)\¹Kº. This informa-
tion is not necessary.

(iii) One might also implement COVER for certain cubes Q without using Φ, e.g. if it
was known from separate considerations that ϕ(¹Qº, h)∩ ¹Kº=∅.

For a set A ⊂ K of full cubes, let (analogous to Equation (3.3))

WRAP(A) := {Q ∈ K |Q ∩ |A| 6=∅} ,

where we consider the right edge at [2m] glued to the left edge at [0].
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4.4. Algorithms

Constructing the weak index pair

We define the following subset of K:

M := {[i, i + 1]× [ j, j + 1]× [k, k+ 1] | 0≤ i < 2m, j, k ∈ {1, . . . , 2m − 2}} .

The geometric realization ¹Mº is our candidate for an isolating neighborhood of ϕh.
The property ¹Mº ⊂ int¹Kº is crucial for the proof of Proposition 4.4.1. For a combi-
natorial enclosure F : X ⇒ X of ϕh, we let its restriction to M be defined by

FM : M⇒M, Q 7→ F(Q)∩M= COVER(Q, [h, h])∩M.

Now we use the approach described in Section 3.6. We subdivide M into smaller
cubes and compute a finer enclosure FM until

WRAP(Inv(M,F)) ⊂M. (4.6)

Then, as in Section 3.6, we construct a pair (N 3,L3) of sets of full cubes such that
(¹N 3

º,¹L3
º) is a weak index pair for (Inv(M ,ϕh),ϕh).

Remark 4.3.3. After finding the weak index pair, it is also possible to replace M by a
set M′ ⊂M such that WRAP(Inv(M,F)) ⊂M′. Then Inv(M′,F) = Inv(M,F). Using
M′, we can reduce the thickness of the exit set L3.

4.4 Algorithms

The algorithms presented in this section compute the matrix A appearing in the special
case n= 1 of Theorem 4.2.1.

Our calculations use the following input:

(i) a formula describing the vector field f (alternatively, use Remark 4.3.2),

(ii) the period T such that f (t + T, x) = f (t, x),

(iii) lengths a, b > 0 describing the region K = [0, T]×[−a, a]×[−b, b] ⊂ [0, T]×R2,

(iv) a time step h and a subdivision parameter m;

and return the following output (if the calculations do not fail):

(i) matrix A fulfilling the conditions of Theorem 4.2.1

(ii) optionally: cubical chains u j , z j and w j for j = 1, . . . , k showing that (u1, . . . , uk)
and A fulfill the requirements of Theorem 4.2.1 (cf. Definitions 4.1.2 and 4.1.3).

The approach proceeds as follows: After computing a pair (N ,L) of cubical com-
plexes representing a weak index pair and a basis {[u j]} of H1(N[0],L[0]), the computer
constructs a 1-chain v j for each cubical 1-chain u j such that (u j , v j) is an h-movable pair
of contiguous cycles. The final step then consists in finding a 1-chain homologous to v j

which is a linear combination of the chains (ū1, . . . , ūk).
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In our examples, H0(N[0],L[0]) = 0. However, calculating the Conley index in 0-th
homology can be done as follows. A generator [u] ∈ H0(N[0], L[0]) can be represented
by a vertex x in a component of N[0] that has empty intersection with L[0]. The required
1-chain w is a path along edges of N such that ϕ(¹wº, [0, h]) ⊂ N and ∂ w= y − x with
y ∈N 0

[2m].

4.4.1 Checking usability of a cube

We are ready to formulate the functions used by our algorithm for computing CH1(S0, P).
Function MOVABLE in Algorithm 1 is the function which executes the integration of ϕ
over the time interval [0, h].

Algorithm 1

1: function MOVABLE(cube Q, set of full cubes A)
2: set of full cubes B := COVER(Q, [0, h])
3: if B ⊂A then return TRUE

4: else return FALSE

Proposition 4.4.1.

(i) If MOVABLE(Q,N 3) is TRUE for a cube Q ∈N , then ϕ(p(Q), [0, h]) ⊂ N .

(ii) If MOVABLE(Q,L3) is TRUE for a cube Q ∈ L, then ϕ(p(Q), [0, h]) ⊂ L.

Proof.

(i) By assumption, COVER(Q, [0, h]) = Φ(Q, [0, h])∩K ⊂N 3. This yields

ϕ(p(Q), [0, h]) ⊂ int¹Φ(Q, [0, h])∩ (K∪ (X \K)º ⊂ ¹N 3
º∪ ¹X \Kº,

which is a disjoint union since WRAP(N 3) ⊂ K. The claim follows from the con-
nectedness of ϕ(p(Q), [0, h]) and p(Q) ⊂ ¹N 3

º.

(ii) This is analogous to (i).

The functions USABLEN and USABLEL in Algorithm 2 confirm that a cube can be
used as a summand of w or z, respectively.

Lemma 4.4.2.

(i) If USABLEN(Q) is TRUE, then ϕ(p(Q), [0, h]) ⊂ N.

(ii) If USABLEL(e) is TRUE, then ϕ(p(e), [0, h]) ⊂ L.

(iii) If USABLEN(c) is TRUE, then ϕ(¹cº, [0, h]) ⊂ N.
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Algorithm 2

1: function USABLEN(square Q)
2: if Q /∈N 2 then return FALSE

3: for F ∈ COBOUNDARY(Q)∩N 3 do
4: boolean FGOOD := TRUE

5: for Q′ ∈ BOUNDARY(F) do
6: if not MOVABLE(Q′,N 3) then
7: FGOOD := FALSE

8: break . stop checking squares in boundary of F

9: if FGOOD then return TRUE

10: return FALSE

11: function USABLEL(edge e)
12: if e /∈ L1 then return FALSE

13: if MOVABLE(e,L3) then
14: for Q ∈ COBOUNDARY(e) do
15: if USABLEN(Q) then
16: return TRUE

17: return FALSE

18: function USABLEN(2-chain c)
19: set of squares A := {Q | c(Q) 6= 0}
20: if not A ⊂N 2 then return FALSE

21: for Q ∈A do
22: if not USABLEN(Q) then return FALSE

23: return TRUE

Proof. This follows from Proposition 4.4.1.

Remark 4.4.3. The checks in functions USABLEN and USABLEL are slightly more re-
strictive than one might expect. Note that USABLEN(Q) is TRUE if and only if Q is in
the boundary of a full cube F for which all boundary cubes are movable. In practice,
this helps avoid some dead ends in Algorithm 5.

4.4.2 Constructing a contiguous pair of cycles

The symbol VAR in Algorithms 3 and 4 means that the following variable is passed by
reference to the function.

For a vertex y = [i]× [ j]× [k] ∈ L0, define the following 5-tuple S(y) of oriented
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edges

S(y) = ([i, i + 1]× [ j]× [k], [i]× [ j, j + 1]× [k], [i]× [ j]× [k, k+ 1],

− [i]× [ j − 1, j]× [k], −[i]× [ j]× [k− 1, k]),

which is used in Algorithm 3.

Algorithm 3

1: function PATHBACKTRACKING(VAR path c, vertex x)
2: if c = 0 then y := x
3: else
4: let e be the last edge of c
5: if not USABLEL(e) then return FALSE

6: let y be the endpoint of c

7: if y ∈ L0
[2m] then return TRUE

8: for d ∈ S(y) do
9: 1-chain s := c + d

10: if PATHBACKTRACKING(s, x) then
11: c := s; return TRUE . success

12: return FALSE . c remains unchanged

13: function PATH(vertex x)
14: 1-chain cx := 0
15: if PATHBACKTRACKING(cx , x) then return cx

16: else return FAILURE

Proposition 4.4.4. Assume that function PATH from Algorithm 3 is called with a vertex
x ∈ L0

[0] as input. If it terminates successfully, then it returns a path cx satisfying ∂ cx =
y − x for some y ∈ L0

[2m] and ϕ(¹cxº, [0, h]) ⊂ L.
Additionally, for every n ∈ {0, . . . , 2m−1} there is exactly one edge e such that π1(e) =

[n, n+ 1] and cx(e) 6= 0. This edge has coefficient cx(e) = 1.

Proof. The algorithm performs a depth-first search using backtracking. A new candidate
path s is rejected in line 10 if USABLEL(d) = FALSE. Therefore ϕ(¹cxº, [0, h]) ⊂ L
follows from Lemma 4.4.2(ii). The last property follows from the definition of S(y).

First we use cubical homology software in order to construct a finite basis {[u j]} of
H1(N[0],L[0]), where each u j ∈ C1(N[0]) is a path with ∂ u j ∈ C0(L[0]). From here on we
drop the index j for readability and fix some 1-chain u = u j . Then ∂ u = x+ − x− with
x+, x− ∈ L0

[0]. The 2-chain w is constructed by successively adding oriented squares.
If necessary, squares within a layer N[n] are added using the function FLOODFILL in
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Q

v̄

v

e

v′
D

The squares drawn are contained
in {Q′ ∈N[n] | USABLEN(Q′) = TRUE}.
One can imagine the time axis
(n axis) perpendicular to the fig-
ure. Each square Q′ is dark gray
if USABLEN([n, n+ 1] � ∂ πd(Q′)) is
TRUE and light gray otherwise. Line 7
of Alg. 4 shows that FLOODFILL adds
light gray squares to D (hatched area).
The red 1-chain v̄ is a part of v (red
and orange) that is replaced by the ho-
mologous 1-chain v′ (green).

FIGURE 4.2: A typical state of the variables of Algorithm 5 in line 15

Algorithm 4. We use the index n during construction even though the functor Hn appears
in Theorem 4.2.1. Since we only consider H1 in our computations, this should not lead
to confusion.

Algorithm 4

1: function FLOODFILL(square Q ∈N[n], 1-chain c, VAR 2-chain D)
2: if (D(Q) 6= 0 or not USABLEN(Q)) then return

3: D := D+Q
4: for edges e′ with (∂Q)(e′) 6= 0 do . add neighboring squares of Q
5: if c(e′) 6= 0 then continue . do not cross c

6: for Q′ ∈ COBOUNDARY(e′)∩N[n] do
7: if not USABLEN([n, n+ 1] � ∂ πd(Q′)) then
8: if Q′ 6=Q then
9: FLOODFILL(Q′, c, D)

Proposition 4.4.5. The function FLOODFILL from Algorithm 4 with input Q ∈ N 2
[n], a

chain c ∈ C1(N[n]) and D = 0 ∈ C2 terminates. After execution, D is a 2-chain in N[n]
with ϕ(¹Dº, [0, h]) ⊂ N.

Proof. The recursion terminates because N 2
[n] is finite, hence the search tree is finite. The

propertyϕ(¹Dº, [0, h]) ⊂ N is guaranteed by the check in line 2 and Lemma 4.4.2(i).

We are ready to formulate Algorithm 5 which constructs v using the given 1-chain u.
The idea is sketched in Figure 4.2. Note that the lines containing w could be removed
without changing the behavior of the algorithm.
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Algorithm 5

1: function FINDPARTNER(1-chain u)
2: 0-chain x+ − x− := ∂ u
3: 1-chain z := PATH(x+)− PATH(x−)
4: 2-chain w := 0
5: 1-chain v := u+ z[0]
6: for n := 0 to 2m − 1 do
7: OUTERLOOPLABEL:
8: for e with v(e) 6= 0 do
9: if not USABLEN ([n, n+ 1] �πd(e)) then

10: for Q ∈ COBOUNDARY(e)∩N[n] do . try both sides of e
11: 2-chain D := 0
12: FLOODFILL(Q, v, D)
13: if (∂Q)(e) · v(e) = 1 then D := −D . switch orientation

14: 1-chain v̄ :=
∑

v(e′)(∂ D)(e′)6=0 v(e′)e′

15: 1-chain v′ := v̄ + ∂ D
16: if USABLEN

�

[n, n+ 1] �πd v′
�

then
17: w := w− D
18: v := v − v̄ + v′

19: goto OUTERLOOPLABEL

20: return FAILURE . give up if adding squares in N[n] did not help

21: w := w− [n, n+ 1] �πd v
22: v := [n+ 1] �πd v + z[n+1]

23: return v

Proposition 4.4.6. When function FINDPARTNER from Algorithm 5 is run with input a
path u ∈ C1(N[0],L[0]) and it returns v, then (u, v) is a contiguous and h-movable pair of
cubical cycles. Additionally, ∂ w= u− v + z.

Proof. Proposition 4.4.4 and the definition of z in line 3 show that ϕ(¹zº, [0, h]) ⊂ L.
Note that right after the initialization of v in line 5, the pair (u, v) is contiguous and
movable because u− v + z[0] = 0. Then for every change of the variable v, let vold be its
old value and vnew its new value. The proposition is proven by showing that the pair
(vold, vnew) is contiguous and movable at every change (cf. Lemma 4.1.4). There are
two kinds:

(i) The change in line 18: Observe that ∂ D = vnew − vold and ϕ(¹Dº, [0, h]) ⊂ N be-
cause it was constructed using FLOODFILL (cf. Proposition 4.4.5)

(ii) The change in line 22: The successful termination of the for-loop in line 8 to-
gether with the check in line 9 ensures that ϕ(¹[n, n + 1] � πd voldº, [0, h]) ⊂ N
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by Lemma 4.4.2(i). Additionally, using (3.2),

∂ ([n, n+ 1] �πd vold) = ∂ [n, n+ 1] �πd vold − [n, n+ 1] � ∂ πd vold

= [n+ 1] �πd vold − [n] �πd vold − z(n,n+1) = vnew − vold − z(n,n+1].

The property ∂ w = u − v + z follows from adding these equations over all changes of
w.

4.4.3 Finding a matrix describing the index map

Algorithm 6

1: function FINDMATRIX(cubical complexes N ,L)
2: construct {u1, . . . , uk} ⊂ C1(N[0],L[0]) representing a basis of H1(N[0],L[0])
3: ūi := [2m] �πd(ui) for each i
4: (k× k)-matrix A= [ai j], every ai j := 0 ∈ F.
5: for j := 1 to k do
6: v := FINDPARTNER(u j)
7: construct w′ ∈ C2(N[2m]) such that: . analogous to Alg. 5, lines 7 to 20

(i) MOVABLE(Q,N 3) whenever w′(Q) 6= 0;

(ii) if (v − ∂ w′)(e) 6= 0, then MOVABLE(e,L3) or ui(e) 6= 0 for some i; and

(iii) there is an edge e such that v(e)w′(e) = 1.

8: v′ := v − ∂ w′

9: for i := 1 to k do . fill j-th column of matrix A
10: find e ∈N 1

[2m] such that ūi(e) · v′(e) 6= 0
11: if such an e was found then ai j := v′(e)/ūi(e)

12: while c := v′ −
∑

i ai j ūi 6= 0 do . check if j-th column of A is correct
13: let e be an edge with c(e) 6= 0
14: if MOVABLE(e,L) then v′ := v′ − c(e)
15: else return FAILURE

16: return A

Proposition 4.4.6 and Theorem 4.2.1 now yield:

Theorem 4.4.7. Let T/h ∈Q and let (N ,L) be cubical complexes constructed as above, in
particular (¹Nº,¹Lº) is a weak index pair for (S,ϕh).

When the function FINDMATRIX from Algorithm 6 does not fail and returns A, then A
fulfills the requirements of Theorem 4.2.1. Therefore, CH1(S0, P) ∼= L(α) for any α with
A∈ M(α).

Proof. Observe that each pair (v j ,
∑

i ai j ūi) is contiguous and movable by construction
in Algorithm 6. Since all pairs (u j , v j) are contiguous and movable by Proposition 4.4.6,
all pairs (u j ,

∑

i ai j ūi) are contiguous and movable by Lemma 4.1.4.
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Potential failure

There are several places where the algorithm can fail. The construction of the weak
index pair can only fail due to relation (4.6) at the end of Section 4.3 being false. If
this happens, one can increase m until running out of memory. If this does not help,
choosing a different time step h might. Time steps similar to each cube’s width T · 2−m

in time direction proved useful in experiments.
Algorithm 3 might not find a path from L[0] to L[2m] even though one exists. The

reason is that we only construct paths which go forward in time direction as shown
in Proposition 4.4.4. Algorithm 5 can only handle this subset of paths because we are
always increasing the index n in time direction, but never decreasing (loop called in
line 6). This suffices in our examples presented in Section 4.5.

Runtime and memory complexity

The time step h and the size of a cube Q do not significantly influence the runtime or
the memory used. Both the runtime and the memory for the construction of FM grow
proportionally to 8m, the number of full cubes in K.

The construction of z, w and v mainly requires runtime. The memory used is smaller
than for representing FM. Since the number of edges and squares grows proportionally
to 8m, the memory used also does. But the runtimes for PATH could be high in the worst
case.

For finding the path in Algorithm 3, we use a depth-first search which stops when a
usable path is found. In the worst case, the algorithm tries every path starting from x
exactly once. For each endpoint y ∈ L0 of the existing path, there are up to 5 different
oriented edges which can be added and where integration must be performed. The
number of edges in L1 rises with O(8m). If trying to add a new edge e cost the same
each time, the worst case time complexity would be O(58m

), an upper bound for our
algorithm.

We use strategies to stay away from this worst case. Even though not mentioned
in the pseudocode, we explicitly store edges which were already checked to avoid ad-
ditional integration, which yields practical runtimes around O(8m). If possible, the al-
gorithm first goes forward along the time direction in the loop starting at line 8. Then,
typically, backtracking is only used within one layer L[n], so the algorithm was suffi-
ciently fast in practice.

The function FLOODFILL in Algorithm 4 has a time complexity of O(4m) because we
run the integration only once on each square and then save the result. Each layer N[n]
constains at most 4m squares. Due to the loop in Algorithm 5, line 6, constructing w j and
v j for each generator u j has a time complexity of O(2m ·4m) = O(8m). The construction
of v′ and the matrix A in Algorithm 6 requires only negligible resources.

55



4.5. Examples

4.5 Examples

Example 4.5.1 (One-dimensional first relative homology). We applied Algorithm 6 us-
ing the weak index pair constructed as in Subsection 4.3 to the differential equation

ż = (1+ eiηt |z|2)z,

which shows chaotic behavior for η ∈ (0, 1] (cf. [MS10] and references therein). This
equation has period T = 2π/η in t. We analyzed the equation for η = 2.0 using the
parameter h = 1/64 = 0.015625. More precisely, since π is irrational, the algorithm
used π′ ∈ [π− ε,π+ ε], where ε is the machine precision. Therefore T ′ = 2π′/η ∈ Q,
i.e., the numerical proof is found for η′ = 2π′/T ′ instead of η. We covered the candidate
M = S1 × [−3, 3]× [−3,3] = ¹Mº for an isolating neighborhood using cubes of equal
size as described above. Our algorithm found a combinatorial index pair (N ,L) inside
M at a subdivision depth of m= 6. The chains constructed by our algorithm are shown
in Figure 4.3. The output was the matrix A= (−1).

Theorem 4.4.7 applies. We conclude that the generator [u] ∈ H1(N0, L0) is sent to
−[u] ∈ H1(N0, L0) under the relative homology endomorphism induced by the Poincaré
map P.

Using our implementation, finding the combinatorial index pair (N ,L) took 330
seconds seconds. At this stage, the program used 466 MB of RAM, which was almost
completely used for storing FM. After finding (N ,L), FM is deleted and less memory is
used. The construction of all the chains in Algorithm 6 took 149 seconds, out of which
18 seconds were used to find z. The rest for finding w, v and v′. Most of the time was
used for the rigorous integrations. The set K consists of (26)3 = 262144 cubes, the set
N of 132 728 cubes.

Example 4.5.2 (Two-dimensional first relative homology). We applied the same algo-
rithms as above to the equation

ż = eiηtz2 + z,

This equation has period T = 2π/η in t. We analyzed the equation for η = 2.0. Again,
we used the candidate M = S1×[−3,3]×[−3, 3] = ¹Mº for an isolating neighborhood.
Our software found a combinatorial index pair (N ,L) inside M at a refinement depth of
m= 7 using the parameter h= 1/64. The index pair with the resulting chains is shown
in Figure 4.4. Let α be an endomorphism with

A=

�

−1 −1
1 0

�

∈ M(α),

Now α is an automorphism (the determinant of A is 1), therefore L(α) = α. Using
Theorem 4.4.7, the Conley index of the Poincaré map is given up to conjugacy by
CH1(S0, P)∼= α, i.e., A∈ M(CH1(S0, P)).
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↓ u

(a) The full cubes in (N ,L) (blue: L3,
red: N 3 \L3) and u on the left-hand side.

u ↓
v ↑

w

←−z

(b) The blue squares are L2
[0] ∪L

2
[2m].

Similarly for N . The chains after executing
FINDPARTNER(u) are shown.

FIGURE 4.3: The intermediate results for Ex-
ample 4.5.1. The algorithm makes sure that
∂ w= u−v+z as shown in Subfigure (b). Subfig-
ure (c) shows the construction of v′ from v. Note
that ∂ w′− v+ v′ lies in L. The movability prop-
erties of the chains cannot be seen in the figure,
but they are checked numerically. The output is
A= (−1), which can be seen from Subfigure (c)
because u points down and v′ points up.

v′
↑u ↓

w′

v ↑

(c) Overall results. In this special
example, the support of v′ is contained

in the support of v.
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↑ u1

u2

↘

(a) Index pair (N ,L) and 1-chains u1, u2

u1
↖

↓ v1

v1
w1

(b) The construction of v1. Note that v1

consists of two connected 1-chains, one of
which has boundary 0.

u1
↖

u2
←

↓ v1 w′1

ū1↖

ū2
↙

(c) The 2-chain w′1 fills most of
N[2m] \L[2m]. Here v′1 = −ū1 + ū2.

u1
↖

u2↙ w2

v2 ↓
w′2

ū1↖

(d) Computing the second column of A.
Here v′2 = −ū1.

FIGURE 4.4: Outputs for Example 4.5.2, using the same colors as in Figure 4.3
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Finding (N ,L) took 2256 seconds on the same hardware as before, using 3.4 GB of
memory. Then Algorithm 6 required further 545 seconds, out of which 99 seconds were
used to construct z1 and z2.

In contrast to this result, when starting with M = S1 × [−0.1, 0.1] × [−0.1, 0.1],
the algorithm yields a different Conley index because the output in this case is A =
(1). Since the Conley index is a function of the invariant sets, Inv([−0.1, 0.1]2, P) 6=
Inv([−3,3]2, P).
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Chapter 5

Time discretization for finding
Morse decompositions of a flow

In this chapter, we return to the question of choosing the time parameter h to discretize a
given flowϕ onRd . In Section 3.5, we hinted at potential difficulties. In this chapter, we
propose the following time discretization. For a flow ϕ on X and a continuous function
τ: X → R>0, we let

ϕτ : X → X ,

x 7→ ϕ(x ,τ(x)).

In addition to computing Conley indices, we would also like to compute Morse de-
compositions; these tell us which isolated invariant sets can be connected by an orbit.

We first show that the information we get numerically about ϕτ also tells us some-
thing about ϕ. Then we present a numerical example, where the computations for ϕτ
yield more information than for ϕh. The idea of using a time step varying in the phase
space was also proposed in [CMLZ08, Definition 3.1]. However, the necessary theoret-
ical background is not covered therein. The theory is not fully analogous to the case
of a constant function τ, i.e., τ(x) = h ∈ R>0 for all x ∈ X . This theoretically easier
situation is discussed in Chapter 3. Most of the material covered in this chapter is also
presented in [MMW15]. An example where Morse decompositions for ϕ are computed
using ϕh is presented in [PGCL12].

5.1 Isolating neighborhoods

Even though there is an inverse ϕ−h of ϕh for any flow ϕ, there need not be an inverse
for ϕτ. We formulate a simple criterion for the existence of backward solutions of ϕτ.

Lemma 5.1.1. Let x ∈ X and suppose that τ(ϕ(x ,R)) ⊂ R>0 is bounded. Then there is
a solution γ: Z → X of the discrete system ϕτ : X → X such that γ(0) = x and γ(Z) ⊂
ϕ(x ,R).
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Proof. Define γ(n) = ϕn
τ(x) for n ≥ 0. Let n < 0 and assume that γ(n + 1) is already

constructed. Then there is an s ≤ 0 such that γ(n+ 1) = ϕ(x , s). Define the function

g : R→ R, t 7→ τ(ϕ(x , t))− s+ t.

We have g(s) > 0, and since t 7→ τ(ϕ(x , t))− s is bounded, g(t) < 0 for t sufficiently
small. Hence, by the intermediate value theorem, there is a t ′ < s such that g(t ′) = 0.
Choose γ(n) := ϕ(x , t ′). Then

ϕ(γ(n),τ(γ(n))) = ϕ(ϕ(x , t ′), s− t ′) = ϕ(x , s) = γ(n+ 1).

The following theorem slightly generalizes Theorem 3.3.1.

Theorem 5.1.2 ([MSW15]). Let S ⊂ X be compact. Then the following three conditions
are equivalent:

(i) S is an isolated invariant set with respect to ϕ.

(ii) For every continuous map τ: X → R>0, S is an isolated invariant set with respect to
ϕτ.

(iii) There is a number h> 0 such that S is an isolated invariant set with respect to ϕh.

Proof. Assume condition (i) holds and fix a continuous map τ: X → R>0. Obviously
ϕτ(S) ⊂ S. Using Lemma 5.1.1, for every x ∈ S there is an x ′ ∈ S such that ϕτ(x ′) = x .
This means that S ⊂ ϕτ(S). Hence S is invariant with respect to ϕτ. Choose N , an
isolating neighborhood for S with respect to ϕ. Let T := sup{τ(x) | x ∈ N } <∞. To
see that S is an isolated invariant set with respect to ϕτ, consider the (in general not
continuous) map

σ : N → [0,∞],

x 7→ sup{ t ∈ R+ | ϕ(x , [0, t]) ⊂ N }.

First we show that each x ∈ S has an open neighborhood Vx such that σ(Vx) ⊂ [T,∞]:
Assume not. Then there is a sequence of points xn converging to x with σ(xn) < T .
Since the times σ(xn) lie in the compact set [0, T], we can take a subsequence of {xn}
(again called {xn}) such that σ(xn) converges to some T ∗ ∈ [0, T] for n → ∞. Let
yn = ϕ(xn,σ(xn)), which yields a sequence of points in bd N . Using the continuity of ϕ,
yn converges to ϕ(x , T ∗). Since bd N is closed, ϕ(x , T ∗) ∈ bd N . But also ϕ(x , T ∗) ∈ S
because x ∈ S. A contradiction.

Since S is compact, a finite union of the sets cl Vx constitute a compact neighborhood
M ⊂ N of S such thatσ(x)≥ T for x ∈ M . We will show that S = Inv(M ,ϕτ). Obviously
we have

S = Inv(N ,ϕ) = Inv(M ,ϕ) ⊂ Inv(M ,ϕτ).
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To show the opposite inclusion, take x ∈ Inv(M ,ϕτ) and let γ: Z→ X be a solution of
ϕτ through x . Let xn := γ(n) and tn := τ(xn). Then

xn+1 = ϕ
n+1
τ (x) = ϕ(ϕn

τ(x), tn) = ϕ(xn, tn).

By definition of T , we have tn ≤ T . Since xn ∈ M , we have σ(xn) ≥ T . It follows
that ϕ(xn, [0, tn]) ⊂ N for all n, and consequently x ∈ Inv(N ,ϕ) = S. Thus implication
(i)=⇒ (ii) is proven. Implication (ii)=⇒ (iii) is obvious because we can always take τ
to be a constant positive function. Implication (iii)=⇒ (i) is part of Theorem 3.3.1.

Remark 5.1.3. There is no full analogue of Corollary 3.3.2 since we cannot replace
condition (iii) in the theorem above by the statement

(iii’) There is a continuous function τ: X → R+ such that S is isolated invariant with
respect to ϕτ.

An example for which (iii′) =⇒ (i) is wrong can be constructed by considering a
system with a limit cycle and using a time step function τ which sends a certain point
x ′ on the limit cycle to itself under ϕτ by letting τ(x ′) be the period of the orbit. With
an appropriate choice of τ for x near x ′, this yields an isolated fixed point x ′ for ϕτ,
but the set S = {x ′} would not be invariant for ϕ. We defer a detailed discussion to
Example 5.3.7, where the example is presented in the context of Morse decompositions.

5.2 Comparing Conley indices

The main ingredient for comparing the Conley index of ϕ with the Conley index of ϕh

for some h> 0 is the existence of a common index pair for both dynamical systems. The
following lemma was verified in the proof of [Mro90a, Theorem 2].

Lemma 5.2.1. Let S be an isolated invariant set for ϕh (hence for ϕ). Then there is a
compact pair (N ′, L′) which is an index pair for (S,ϕ) and a strong index pair for (S,ϕh).

We also have a slightly more general statement for a time-step function τ, but we
need an extra assumption about the equality of the invariant sets with respect to ϕ and
ϕτ.

Lemma 5.2.2. Let S be an isolated invariant set for ϕτ and also for ϕ. Then there is a
compact pair (N ′, L′) such that

(i) (N ′, L′) is an index pair for (S,ϕ) and a strong index pair for (S,ϕτ); and

(ii) the index map (ϕτ)(N ′,L′) is homotopic to the identity on N ′/L′.

Proof. We prove part (i) analogously to the proof of Lemma 5.2.1 as given in [Mro90a,
Theorem 2]: The proof of [Ryb87, Chapter I, Theorem 5.1] shows the existence of an
open neighborhood V ⊂ X of S such that cl V is an isolating neighborhood of S and of
continuous functions κ,λ: V → [0,∞) such that S = κ−1(0)∩λ−1(0), and
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(a) If κ(x)> 0, t > 0 and ϕ(x , t) ∈ V , then κ(x)< κ(ϕ(x , t));

(b) if λ(x)> 0, t > 0 and ϕ(x , t) ∈ V , then λ(x)> λ(ϕ(x , t)).

For an arbitrary ζ > 0, define subsets of V :

G(ζ) := { x ∈ V | κ(x)< ζ,λ(x)< ζ },

H(ζ) := { x ∈ V | κ(x)≤ ζ,λ(x)≤ ζ }.

Let T :=max{τ(x) | x ∈ cl V }. The local compactness of X can be used to observe that
for any open neighborhood U of S there is a ζ > 0 such that ϕ(H(ζ), [0, T]) ⊂ U .

Applying this observation to U = V , we conclude the existence of an ε > 0 such that
ϕ(H(ε), [0, T]) ⊂ V . Let M := H(ε). Applying the observation to U = G(ε) shows the
existence of a δ > 0 such that ϕ(H(δ), [0, T]) ⊂ G(ε). Define

N ′ := { x ∈ V | κ(x)≤ ε,λ(x)≤ δ },

L′ := { x ∈ N ′ | δ ≤ κ(x) }.

The pair (N ′, L′) is an index pair for (S,ϕ) and a strong index pair for (S,ϕτ). It is
straightforward to check the properties in Definitions 2.4.2 and 2.5.6. As an example, we
verify property 2.5.6(iii) forϕτ. Let x ∈ N ′\L′. The property x ∈ N ′means that κ(x)≤ ε
and λ(ϕτ(x)) ≤ λ(x) ≤ δ. We also have κ(x) < δ. Now assume ϕτ(x) /∈ N ′. Then
κ(ϕτ(x)) > ε. This contradicts ϕ(H(δ), [0, T]) ⊂ G(ε). Overall, this shows ϕτ(x) ∈ N ′

and therefore property 2.5.6(iii).
To see part (ii) of the proposition, we consider the semiflow ψ: N ′/L′ × [0,∞)→

N ′/L′ given by

ψ(x , t) =

(

ϕ(x , t) if ϕ(x , [0, t]) ∈ N ′ \ L′,

∗ otherwise.

It is continuous by [RS88, Theorem 4.2]. Similarly, we could use the homotopy con-
structed in the proof of [Con78, III.4.2B].

Now observe that given a point x ∈ N ′ \ L′,

ϕτ(x) ∈ N ′ \ L′ if and only if ϕ(x , [0,τ(x)]) ⊂ N ′ \ L′. (5.1)

One impliciation is trivial. We only need to show that ϕτ(x) ∈ N ′ \ L′ implies that
the flow trajectory from x to this point lies in N ′ \ L′. First note that x ∈ H(δ), and
therefore ϕ(x , [0,τ(x)]) ⊂ G(ε) ⊂ V . Now for y ∈ ϕ(x , [0,τ(x)]), we get κ(y) < ε.
We also have λ(y) < δ because of (b). Therefore, y ∈ N ′. Additionally, κ(y) < δ
because of the assumption κ(ϕτ(x))< δ and (a). This shows y ∈ N ′ \ L′.

The equivalence (5.1) enables us to describe the index map:

(ϕτ)(N ′,L′)(x) =ψ(x ,τ(x)).
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Therefore

H : N ′/L′ o [0,1]→ N ′/L′,

(x , s) 7→ψ(x , sτ(x))

is a pointed homotopy from the identity to the index map of ϕτ on N ′/L′.

Now we show how the Conley index of (S,ϕ) can be computed from the Conley
index of (S,ϕτ), where we let dom denote the domain of a homomorphism.

Theorem 5.2.3. Let S be an isolated invariant set for ϕ and ϕτ. Let (N , L) be an index
pair for (S,ϕτ) and I(N ,L) = eH∗((ϕτ)(N ,L)) its homological index map. Then there is an
isomorphism

CH∗(S,ϕ)∼= domL(I(N ,L)).

Proof. Consider a common index pair (N ′, L′) for (S,ϕ) and (S,ϕτ) as in Lemma 5.2.2.
Property (ii) therein shows that I(N ′,L′) = eH(ϕτ)(N ′,L′) is the identity in homology (Sec-
tion 2.3), and it still is the identity after applying the Leray functor. The automorphisms
L(I(N ,L)) and L(I(N ′,L′)) are isomorphic in Aut because (N , L) and (N ′, L′) are index pairs
for (S,ϕτ). This shows that also L(I(N ,L)) = id

eH(N ′/L′).
Since (N ′, L′) is an index pair for (S,ϕ), we have

CH∗(S,ϕ) = eH∗(N
′/L′) = domL(I(N ,L)).

The following theorem is similar to, but slightly stronger than Theorem 5.2.3. Even
if homology is infinite-dimensional, taking the generalized image is not necessary in
Theorem 5.2.3.

Theorem 5.2.4 (M. Mrozek, [MSW15]). Let S be an isolated invariant set for ϕ and ϕτ.
Let (N , L) be an index pair for (S,ϕτ) and I(N ,L) = eH(ϕτ)(N ,L) its homological index map.
Then there is an isomorphism

CH∗(S,ϕ)∼= eH∗(N/L)/gker(I(N ,L)).

Proof. There is a common index pair (N ′, L′) for (S,ϕ) and (S,ϕτ) as in Lemma 5.2.2.
Thus, by Theorem 2.5.20, there are homomorphisms r, s and an n ∈ N such that the
following diagram commutes.

eH∗(N/L) eH∗(N/L)

eH∗(N ′/L′) eH∗(N ′/L′)

r

In
(N ,L)

r

In
(N ′ ,L′)=id

s
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The lower right triangle shows that s is injective and r is surjective. This yields

CH∗(S,ϕ)∼= eH∗(N ′/L′)∼= im(s) = im(In
(N ,L))

∼= eH∗(N/L)/ker(In
(N ,L)).

Additionally, ker(In
(N ,L)) = gker(I(N ,L)) because I kn

(N ,L) = In
(N ,L) for any k > 0.

5.3 Morse decompositions

Here we deal with another important invariant for a dynamical system which can be
extracted from a restricted combinatorial enclosure in some isolating neighborhood M ⊂
X . We are interested in possible trajectories inside S = Inv(M ,ϕ).

In order to describe what happens to a trajectory in S at times going to ±∞, we
recall the notions of α- and ω-limit sets.

Definition 5.3.1. Let x ∈ X , and let ϕ be a global flow on X .

(i) The ω-limit set ω(x ,ϕ) is the set of accumulation points of ϕ(x , [0,∞)).
(ii) The α-limit set α(x ,ϕ) is the set of accumulation points of ϕ(x , (−∞, 0]).

Definition 5.3.2. Let x ∈ X and f : X → X .

(i) The ω-limit set ω(x , f ) is the set of accumulation points of { f k(x) | k > 0 }.
(ii) A point y ∈ X is in the α-limit set α(x , f ) if and only if there exists a solution

γ: Z→ X with γ(0) = x such that y is an accumulation point of γ(Z−).

Definition 5.3.3. Given a dynamical system (i.e., a flow ϕ or a map f ) and an isolating
neighborhood M with S = Inv(M) (refering to Inv(M ,ϕ) or Inv(M , f ), respectively),
we call a set of disjoint isolated invariant sets {Sp | p ∈ P} together with an acyclic
directed graph MG with vertices P a Morse decomposition in M if for every y ∈ S one of
the following holds:

(i) y ∈ Sp for some p ∈ P; or

(ii) there are p, q ∈ P and a path from p to q in MG, such that α(y) ⊂ Sp and ω(y) ⊂
Sq.

In order to show that a given Morse decomposition for ϕτ is also a Morse decompo-
sition for ϕ, we can apply the following two lemmas.

For A⊂ X , let
ϕ[0,τ](A) :=

⋃

x∈A
ϕ(x , [0,τ(x)]) ⊂ X .

Lemma 5.3.4. Let {Sp | p ∈ P } be a Morse decomposition in M for ϕτ with isolating
neighborhoods Mp, i.e., Mp ∩ Mq = ∅ for p 6= q and Sp = Inv(Mp,ϕτ) ⊂ int Mp for all
p ∈ P. Let p ∈ P. If

(∗) ϕ[0,τ](Mp) ⊂ M and ϕ[0,τ](Mp)∩Mq =∅ for all q ∈ P \ {p},

then Inv(Mp,ϕ) = Inv(Mp,ϕτ).
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5.3. Morse decompositions

Proof. Let p ∈ P and M ′p = cl
�

M \
⋃

q∈P\{p}Mq

�

. First we show

Inv(Mp,ϕτ) ⊂ Inv(M ′p,ϕ). (5.2)

Let γ: Z→ Mp be a solution to ϕτ in Mp. Then for each n ∈ Z: ϕ(γ(n), [0,τ(γ(n))]) ⊂
M ′p by assumption (∗) in the lemma. Gluing these pieces together yields a trajectory for
ϕ in M ′p.

We also show
Inv(M ′p,ϕτ) ⊂ Inv(Mp,ϕτ). (5.3)

Assume there is a point x ∈ Inv(M ′p,ϕτ)\ Inv(Mp,ϕτ). Hence, x /∈
⋃

q∈P Sq. Now either
α(x ,ϕτ) or ω(x ,ϕτ) must lie in some Sq with q 6= p because they cannot lie within the
same Morse set. But this means that any solution of ϕτ through x has to contain points
in int Mq, which is disjoint from M ′p. We conclude x /∈ Inv(M ′p,ϕτ), a contradiction.

Overall, we get the following inclusions, where the middle one is trivial.

Sp
(5.2)
⊂ Inv(M ′p,ϕ) ⊂ Inv(M ′p,ϕτ)

(5.3)
⊂ Sp.

Each set is the same subset of Mp. Therefore also Inv(M ′p,ϕ) = Inv(Mp,ϕ).

Lemma 5.3.5. Let M ⊂ X be an isolating neighborhood for ϕτ (and hence for ϕ). Let
{Sp | p ∈ P } be a Morse decomposition for ϕτ in M with Morse graph MG and assume
that each Sp is invariant also for ϕ. Then {Sp | p ∈ P} is also a Morse decomposition for
ϕ in M with Morse graph MG.

Proof. We only need to show that the Morse graph MG is preserved. From here, consider
a point y ∈ Inv(M ,ϕ) ⊂ Inv(M ,ϕτ). There are p, q ∈ P and a directed path from p to
q in MG such that α(y,ϕτ) ⊂ Sp and ω(y,ϕτ) ⊂ Sq. We show that ω(y,ϕ) ⊂ Sq by
contradiction. The analogous statement for the α-limit is proven similarly.

Let Mq be an isolating neighborhood for ϕτ and therefore for ϕ around Sq, hence
Inv(Mq,ϕ) = Inv(Mq,ϕτ) = Sq ⊂ int Mq. We continue similarly to the proof of Theo-
rem 5.1.2. We define a function

σ : Mq 3 x 7→ sup{ t ∈ R+ | ϕ(x , [0, t]) ⊂ Mq } ∈ [0,∞].

Let T =maxτ(Mq). Now there is a compact neighborhood ÝMq of Sq such that σ(x)≥ T
for all x ∈ÝMq. For all n ∈ N, let γ(n) := ϕn

τ(y).
Assume thatω(y,ϕ) contains a point y ′ outside of Mq. We construct a subsequence

of γ as follows: Since ÝMq is a neighborhood of ω(y,ϕτ) and γ(N)∩ Sq = ∅, there is an
ñ ≥ 0 such that γ(ñ) ∈ÝMq \ Sq. Let s > 0 be such that γ(ñ) = ϕ(y, s). There is an s′ ≥ s
such that σ(ϕ(y, s′)) = T , and then ϕ(x , [s′, s′ + T]) ⊂ cl(Mq \ÝMq). Hence, there is an
n0 ≥ ñ such that γ(n0) ∈ cl(Mq \ÝMq).

Moving forward, we construct a subsequence γ(n0),γ(n1), . . . of points in cl(Mq\ÝMq).
It has a converging subsequence whose limit is also in ω(y,ϕτ) ⊂ Sq. A contradiction.

Overall, ω(y,ϕ) ⊂ Mq, and therefore ω(y,ϕ) ⊂ Inv(Mq,ϕ) = Sq because ω-limits
are invariant.
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5.3. Morse decompositions

We are ready to show

Theorem 5.3.6. Let M be an isolating neighborhood for ϕτ for an arbitrary continuous
function τ: X → R>0 and {Sp | p ∈ P} a Morse decomposition for ϕτ in M with isolating
neighborhoods {Mp}.

Suppose that either

(A) the function τ is constant, i.e., τ(x) = h for all x ∈ X ; or

(B) for all p ∈ P : ϕ[0,τ](Mp) ⊂ M and for all q 6= p holds ϕ[0,τ](Mp)∩Mq =∅.

Then {Sp} is also a Morse decomposition for ϕ in M with the same Morse graph.

Proof. Case (A) follows from Corollary 3.3.2 and Lemma 5.3.5, case (B) from Lem-
mas 5.3.4 and 5.3.5.

The following example shows that when (A) is not fulfilled, we need some kind of
check that a Morse set Sp for ϕτ is indeed invariant under ϕ.

Example 5.3.7. Let X = S1 = R/2πZ be the phase space. Then M := X is an isolating
neighborhood for any flow because it is compact and open (in X ). Consider the flow ϕ
with ϕ(〈θ 〉, t) = 〈θ + t〉, where 〈θ 〉= θ + 2πZ.

For every point 〈θ 〉 ∈ S1, its limit sets are ω(〈θ 〉,ϕ) = S1 and α(〈θ 〉,ϕ) = S1. The
sets ∅ and S1 are the only subsets invariant for ϕ. Define the function

T : R→ R>0,

θ 7→ sinθ + 2π,

which has period 2π and therefore induces a continuous time step function

τ: S1 3 〈θ 〉 7→ T (θ ) ∈ R>0.

Figure 5.1 shows a plot of T and a trajectory of ϕτ.
By definition, T (0) = T (π) = 2π, 2π < T ((0,π))< 2π+1 and 2π−1< T ((π, 2π))<

2π. Additionally |T ′(θ ) = | cosθ | < 1 for θ 6= 0,π. These properties suffice to see that
for any 0 < ε < π the subsets M1 = [−ε,+ε] and M2 = [π − ε,π + ε] are isolating
neighborhoods for ϕτ with isolated invariant sets S1 = {0} and S2 = {π}. Whenever
θ /∈ {0,π}, then α(〈θ 〉,ϕτ) = S1 and ω(〈θ 〉,ϕτ) = S2. We do therefore get a Morse
graph 1→ 2 for ϕτ, an attractor-repeller pair. But there is no attractor-repeller pair for
ϕ in which both invariant sets are non-empty.

The example shows that the assumption that Sp be invariant also for the flow is
necessary in Lemma 5.3.5. Such a function τ can always be constructed when the flow
has a limit cycle L. One simply has to replace 2π by the period of the limit cycle and
extend τ from L to the whole phase space X using Tietze’s extension theorem. It would
be interesting to find out if similar problems can also occur in absence of periodic orbits.
But in any case: It is hard to exclude the existence of periodic orbits for a given flow.
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(a) Time step function T on S1
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γ(1)
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(b) Attractor-repeller pair for ϕτ

FIGURE 5.1: Example 5.3.7. The time step function on the left admits the attractor-
repeller pair for ϕτ in the right figure with M1 isolating the repelling fixed point 0 and
M2 isolating the attracting fixed point π. The arrows represent the direction of the flow
ϕ. A part of a typical trajectory γ: Z→ S1 of ϕτ in the lower half of the circle is drawn.

5.4 A numerical example

We applied the algorithms and software described in [AKK+09] and [BGH+12] for find-
ing Morse decompositions (Definition 5.3.3) as follows. The software constructs a re-
stricted combinatorial enclosure F : M ⇒ M of a given discrete dynamical system
f : Rd → Rd .

We call N ⊂ F a strongly connected path component of F if N 6= ∅ and, for any
Q,Q′ ∈N , there is a directed path from Q to Q′, i.e., Q′ ∈ Fn(Q) for some n≥ 1.

The algorithm constructs the strongly connected path components {M(p) | p ∈ P }
of the directed graph F and builds the directed graph MG(F) with vertices P and a
directed edge from p to q if there are G ∈M(p), H ∈M(q) and a path from G to H in
F . This approach describes the dynamics of the discrete dynamical system f as follows.

Theorem 5.4.1 ([KMV05, Theorem 4.1]). Suppose that M = |M| is an isolating neigh-
borhood for f and S = Inv(M , f ). Then:

(i) Each set |M(p)| is an isolating neighborhood for f .

(ii) The isolated invariant sets Sp = Inv(|M(p)|, f ), p ∈ P, form a Morse decomposition
for f in the invariant set S with Morse graph MG(F).

In the rest of this section, we give an example flow ϕ and show that this algorithm
yields a finer output when using f (x) = ϕ(x ,τ(x)) than when using f (x) = ϕ(x , h).
The justification that our outputs are indeed Morse decompositions for ϕ is formulated
in Theorem 5.3.6.
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(a) Streamplot for Equation (5.4)
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(b) The combinatorial Morse sets

FIGURE 5.2: Visualization of the flow from Equation (5.4) for µ = 2 in M = [−3, 3]×
[−3,3] and outputs when using the fixed time step h = 0.0006 as described in Sec-
tion 5.4.1. There are 57673 spurious combinatorial Morse sets. Most of them consist
of just one box. Calculating the Morse graph was impossible because of memory prob-
lems.

5.4.1 Fixed time step

The following ordinary differential equation is particularly challenging to analyze with
a fixed time step h.

ẋ1 = v1(x) = −x2 + x1(x
2
1 + x2

2 −µ)(x
2
1 + x2

2 − 1)

ẋ2 = v2(x) = x1 + x2(x
2
1 + x2

2 −µ)(x
2
1 + x2

2 − 1)
(5.4)

The equation has a fixed point (0, 0) and limit cycles with radius 1 and
p
µ around the

fixed point. This can be seen by its representation in polar coordinates:

ṙ = r(r2 −µ)(r2 − 1)

θ̇ = 1
(5.5)

The norm of the vector field v increases quickly away from the origin because

‖v(x)‖=
Æ

r2(r2 −µ)2(r2 − 1)2 + r2 ≈ r5 for large ‖x‖.

Far away from the origin, the solutions behave like the solutions of ṙ(t) = r(t)5. This
equation is solved by

r(t) =
1

p
2

4
Ç

�p
2 · r0

�−4 − t
,

where r0 = r(0). Note that the function r is only defined for t < (
p

2 · r0)−4 = (x2
1 +

x2
2)
−2/4 and that, strictly speaking, v induces only a local flow ϕ. For a point x with

‖x‖ > pµ, the solution for the system (5.4) is defined on a maximal open interval Ix

69



5.4. A numerical example

with right bound T+(x) <∞. For h > T+(x), the value ϕh(x) is undefined. Hence,
also our integration algorithm fails when the input is a box containing x and we ask it
to integrate until time h > T+(x). The fixed time step strategy can only be used with a
parameter h<min{ T+(x) | x ∈ M }. Therefore, when M = [−3, 3]2, we have to choose

h< T+((3, 3))≈ (32 + 32)−2/4= 1/1296≈ 0.0007716.

If h is chosen larger, each box Q ∈ X near the boundary of M is assigned an arrow in
Fh to all of the other boxes because the algorithm fails to find an enclosure of ϕh(Q)
(which does not even exist). This would lead to a very large invariant part Inv(X ,Fh)
and should therefore be avoided. But when choosing h small enough, the directed graph
Fh has a lot of small strongly connected components whose corresponding invariant set
of ϕ is empty (so-called spurious Morse sets). They have to occur when the time step h
is so small that ϕ(Q, h)∩Q 6= ∅. But this happens easily near the origin where ‖v(x)‖
is small.

The outputs for µ = 2 are shown in Figure 5.2(b). The algorithm as described
in [BGH+12] subdivided each dimension of |M| into 29 intervals of equal length. Each
colored region is a combinatorial Morse set M(p), p ∈ P. The index set P had 57 675
elements. All but two of the combinatorial Morse sets found are empty.

It took 27 seconds to find the combinatorial Morse sets, but the Morse graph could
not be computed because P was too large for the memory. Also subdividing each di-
mension into 212 did give similarly bad outputs (after 2396 seconds).

5.4.2 Variable time step

We use the following heuristic for the time step function τ. We describe it for a 2-
dimensional example, but it is also applicable in higher dimensions. For each subdivision
level, the norm ‖s‖ =

q

s2
1 + s2

2 is the diagonal of each of the congruent boxes Q ∈M.
Using parameters D > 1 and δ > 0, we define the continuous function

τ: X → R>0, x 7→
D‖s‖

‖v(x)‖+δ
. (5.6)

The idea is that the distance between x and ϕ(x ,τ(x)) should be around D box diag-
onals – using a first-order approximation ϕ(x ,τ(x)) ≈ x + τ(x)v(x). The number δ
ensures that τ is also defined when v(x) = 0. Since τ is usually not constant within
a box Q, the value τ(Q) is an interval. We can find an enclosure of this interval by
considering τ as a function on intervals and replacing x by the box Q when calculat-
ing in interval arithmetic. The software library [CAPD] is used to construct a restricted
combinatorial enclosure Fτ : M⇒M of ϕτ. This means that (cf. Definition 3.4.1)

ϕ(Q,τ(Q))∩M ⊂ intM |Fτ(Q)|.

We apply this strategy with D = 4 and δ = 0.1 to Equation (5.4). Our implemen-
tation returned the finest Morse decomposition of the flow in S = Inv([−3,3]2,ϕ) =
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(c) Check of criterion (B).

FIGURE 5.3: Output for the same system as in Figure 5.2, but using time step function
τ from Equation (5.6) as proposed in Section 5.4.2.

{ x | ‖x‖ ≤ pµ } (more precisely, the finest one which does not contain empty invariant
sets). The output is shown in Figure 5.3. Since τ is not constant, the algorithm has to
verify the criterion (B) of Theorem 5.3.6.

For each p ∈ P, we need to construct an enclosure Z(p) of all the trajectories
ϕ(x , [0,τ(x)]), x ∈ |M(p)|, such that Z(p) ⊂ M \

⋃

q 6=p M(q). Our algorithm uses
[CAPD] to construct Z(p) such that

⋃

Q∈M(p)
ϕ(Q, [0,maxτ(Q)]) ⊂ |Z(p)|,

In Figure 5.3(c), each set M(p) is shown with a darker collar around it such that together
they form Z(p). In our example, the algorithm successfully checked Z(p) ⊂ M and
Z(p)∩M(q) = ∅ whenever p 6= q. The computed enclosure of ϕ[0,τ](|M(1)|) is close
to |M(3)|, but the distance increases when finer resolutions are used.

Finding the Morse decomposition and the Morse graph took 29 seconds, with each
dimension subdivided into 28 intervals. The additional checks for criterion (B) took only
about a second.
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Chapter 6

Conclusion

The theory we presented in Chapters 4 and 5 allows us to analyze flows via numerical
methods developed for discrete dynamical systems. But in both cases, we could not
avoid integrating numerically over a time interval [0, h] or [0,maxτ(Mp)], respectively.
This seems to be the most useful perspective: We analyze a time discretization if we can,
but then we make sure that some extra condition is fulfilled.

In Chapter 4, the advantage compared to the existing methods is obvious: We do
not need to integrate the Poincaré map for the time T and we can construct an index
pair (N , L) without the need to manually construct an index pair for the flow ϕ, as is
done in [MS10]. The proposed algorithm can run fully automatic. But some kind of
intelligent strategy to choose the parameter h would still be useful. We would like to
find the index pair with as few subdivisions as possible.

We would also like to apply these ideas to autonomous ODEs. This raises problems
because not all points require the same time T until they return to the hyperplane on
which the Poincaré map is defined. The theoretical generalization is not straightforward.
Even if we had a theorem similar to Theorem 4.2.1, we would still need to choose
a subdivision of the space. If it is possible to do so using a cubical complex as the
combinatorial model, then it should be possible to reuse the algorithm presented here.

It is hard to estimate how helpful the varying time step strategy proposed in Chap-
ter 5 is. It leads to a very intuitive heuristic for choosing a time step function. But it can
also coarsen the combinatorial map F because ϕ(Q, h) ⊂ ϕ(Q,τ(Q)) for any h ∈ τ(Q).
This strategy seems only useful if the norm of the vector field varies a lot.

Another general problem when analyzing flows this way: The applications of the
methods proposed here are still limited due to computational resources. Numerical in-
tegration of ordinary differential equations consumes a lot of memory and runtime com-
pared to simply covering the image of a map f using interval arithmetic. Additionally,
this integration requires heavy numerical machinery.

In addition, other methods taking into account properties of ODEs could be used for
numerical preprocessing. For example, simply computing the value v(Q) of the vector
field can already tell us a lot about possible flow trajectories passing through a box
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Q. For example, one could show for a lot of the spurious combinatorial Morse sets in
Subsection 5.4.1 that they do not contain invariant subsets.

If one is interested in analyzing one specific equation, using as much prior knowledge
as possible should be a good idea before using the very generic machinery we apply here.

But this generality is also an advantage: We do not need a differential equation
describing our flow. Since a lot of processes in nature seem continuous, assuming an
underlying flow is plausible. Then enclosures of the behavior of a system could be found
by observation. The author of this thesis hopes that the ideas and algorithms presented
here contribute to the understanding of systems which can be modelled in this way.
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