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We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral
shock waves in the vicinity of zero eigenvalue of the Dirac operator. The mechanism, originating from
complex Burger’s-like equation for viscid, pressureless, one-dimensional flows of eigenvalues, is similar to
the recently observed weak-strong coupling phase transition in large N. Yang-Mills theory. The spectral
viscosity is proportional to the inverse size of the random matrix that replaces the Dirac operator in the

universal (ergodic) regime. We obtain the exact scaling function and critical exponents of the chiral phase
transition for the averaged characteristic polynomial for No > 3 QCD. We reinterpret our results in terms
of known properties of chiral random matrix models and lattice data.
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1. Introduction

It was a recently emphasized that the Burgers equation could
be used to understand universal features of the weak to strong
coupling transition in two-dimensional Yang-Mills theory with a
large number of colors N [1-3]. This transition, first studied by
Durhuus and Olesen [4], can be pictured, in the language of the
Burgers equation, as resulting from the collision of two spectral
shock waves at the closure of the gap. The emergence of the Burg-
ers equation in such kind of problems, and related questions in
random matrix theory, seems generic, and can be simply under-
stood by exploiting Dyson’s original idea of matrix random walks.
Then, after a proper rescaling of time that separates the fast mo-
tion of the eigenvalues caused by their mutual repulsion, from
the diffusion that results from the random walks of the matrix
elements, one can easily show, by using standard tools of statisti-
cal mechanics, that the average resolvent obeys indeed a Burgers
equation (or simple generalizations) in the limit of large size ma-
trices. Here we shall obtain the Burgers equation from an exact
equation, akin to a diffusion equation, satisfied by the average
characteristic polynomial. The average resolvent and average char-
acteristic polynomial are simply related in the large N limit. How-
ever, the equation for the characteristic polynomial is exact for any
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matrix size, while no such equation seems to exist for the average
resolvent.

Returning to two-dimensional Yang-Mills theory, we note that
the average characteristic determinant for a Wilson loop of a given
area was indeed shown to obey an exact diffusion equation for any
number of colors N. (which yields a Burgers equation in the infi-
nite N, limit). For finite N, the flow of the eigenvalues is viscid,
with a negative spectral viscosity vy = _21Tc' It is the negative sign
of the viscosity, or of the diffusion constant, that causes the rapid
spectral oscillations at the closure of the gap. This picture was con-
firmed by extensive numerical studies of full Yang-Mills theory in
three dimensions and recently, in four dimensions [3,5].

In this Letter, we demonstrate that a similar mechanism, gov-
erned by similar viscous spectral Burgers-like equation, is respon-
sible for the universal spectral oscillations of the spectrum of the
Dirac operator in QCD that accompany the spontaneous breakdown
of chiral symmetry [6,7]. In the case of the Durhuus-Olesen transi-
tion, where the role of the time is played by the area of the Wilson
loop, an explicit construction of a random matrix model was pro-
vided by Janik and Wieczorek [8], matrices attached to large loops
being formed by multiplying random matrices representing small
loops. Here, as already mentioned, following Dyson [9], we add a
fictitious time (somewhat analogous to Schwinger’s proper time)
in order to describe the diffusion of the random matrices in four-
dimensional Euclidean space. Similar diffusive approach turned out
in the past to lead to several exact results in random matrix the-
ory [10-12].
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2. Random matrix theory and QCD

A cornerstone for the microscopic understanding of the spon-
taneous breakdown of chiral symmetry is the Banks—Casher [13]
relation
|<éq)|52=n@, (1)

Va4

where the quark condensate (qq) is an order parameter for chiral
symmetry, p(0) is the averaged (over the gauge field configura-
tions) level density of the Euclidean Dirac operator near vanishing
eigenvalue, and V4 = L* is the Euclidean volume. This relation
shows that chiral symmetry breaking requires a strong accumu-
lation of eigenvalues near zero, i.e. a level spacing A ~ 1/L* much
larger than the level spacing A ~ 1/L of a free system [14]. This
accumulation of eigenvalues leads to universal properties, that are
well captured by random matrix theory: For eigenvalues smaller
than a characteristic energy scale, referred to as the Thouless
scale Ep, the fluctuations of eigenvalues are described by chiral
random matrix models respecting the global symmetries of the
Dirac Hamiltonian. In QCD, the condition E%IC /A =F21%2 > 1,
where F; is the pion decay constant, determines the regime of
applicability of random matrix theory [15,16].

In Euclidean QCD, all four Dirac matrices can be chosen to be
anti-hermitian, hence the spectrum of the massless Dirac operator
D =iy, (3, —igA,) is purely imaginary. The partition function, for
a fixed topological sector, reads

700 _ <]—[mf1_[ )‘l+mf> (2)

where the averaging is done with respect to gluonic configurations
of a given topological charge v, =+i), are the eigenvalues of D,
and my is the mass of a quark with flavor f. Due to chiral sym-
metry non-zero eigenvalues of D come in pairs, and the number
of fermionic zero modes is related to the topological charge. In
the chiral Gaussian random matrix model (hereafter x GUE), cor-
responding to QCD with N, > 3, the role of the massless Dirac
operator is played by a random matrix W (= —iD) of the following
form:

0 KT

W= ( K 0 ) . (3)
Here K is a rectangular M x N (M > N) matrix with complex en-
tries, Kjj = x;j 4 iy;j, where x;; and y;; are drawn from a Gaussian
distribution. Note that W is hermitian, so that its eigenvalues «;’s
are real. The block-diagonal structure of (3) reflects the chiral sym-
metry of the Dirac operator;: W anticommutes with the analogue
of the Dirac matrix ys, defined here as y5 = diag(1y, —1pu). This
implies in particular that the eigenvalues come in pairs of oppo-
site values, (k, —« ). By construction, W has in addition v=M — N
zero eigenvalues. These mimic the zero modes of quarks propagat-
ing in gauge fields of non-trivial topology.

General spectral properties of the random matrices can be ob-
tained form correlation functions containing both products and
ratios of the characteristic polynomial [17]

1 Z(w;
C(wi, ..., wpwi, ... wp) = <l_[ ( )> (4)
l_[j=1 Z(w})
where (---) denote averaging with respect to the x GUE measure,

and the characteristic polynomial is Z(w) = det(w — W). Directly
related to (4) is the resolvent, R(z) = 9,,C(z; W)|;—w, Whose imag-
inary part yields the spectral density. In the vicinity of zero, the
microscopic (unfolded) resolvent predicts for QCD [18]

R (z)

V S [Ia(x)Ka(x) + lg1 (%) Ka— 1(X)] (5)

where a = N + |v|, with Ny the number of quark flavors, and
x =zV4X. The appearance of Bessel functions I;, Kq in the cor-
relation functions, such as in Eq. (5), is generic. They encode the
universal behaviors that show up already in the simplest objects,
the average characteristic polynomial and/or the average of the in-
verse of the characteristic polynomial. As the first result of the
Letter, we shall obtain an exact differential equation for the aver-
aged characteristic polynomial. This equation is akin to a diffusion
equation, from which a Burgers equation can be derived from a
simple transformation.

3. Burgers equation and the characteristic polynomial for Dirac
operator

We assume now that the entries of the matrix K follow inde-
pendent random walks. Let us denote by P(X,Y,t) the joint prob-
ability that the entries of K take the values X = {x;;} and Y = {y;;}
at time t. The random walks of the matrix elements translate into
the following diffusion equation for P(X,Y,t):

1 M N
WPX.Y.0= DY (9% +07)P(X. Y. 0. (6)

i=1 j=1

We shall be interested in this Letter with the time evolution of
the averaged characteristic polynomial

Q) (w,t) = (det[w — W])
= / dXdY P(X,Y,t)detflw — W(X,Y)]. (7)

where n = N + M is the rank of the polynomial, w is an arbitrary
complex number, and dX = ]_[l-j dx;j, and similarly for dY. In or-
der to get the equation obeyed by Q) (w,t), we consider first the
equation satisfied by the average characteristic polynomial of the
associated N x N Wishart matrix K'K, My, = (det[z — KTK1). This,
we write as an integral over N Grassmann variables n;, 7;:

M} (z, r)=/dndﬁezzf ﬁi”f/dXdY P(X,Y,0)
x exp (—iiKTKn), (8)

where 7KTKn = Z:{\,Ik=1 ZSV':] i (xij — iyij) Xjk + iy jk) k. To derive
the equation for M, we take a time derivative of the expression
above. This acts on P(X,Y,t), which, using Eq. (6), we transform
into derivatives with respect to x;; and y;j. Then, we integrate
by parts, and use standard Grassmann calculus to obtain (after a
somewhat tedious but straightforward calculation) the following
differential equation

My (z,t) = —ZBZZM,‘(,(Z, t) — (v + 13, My(z, t). (9)

This equation is valid for any N and M, and arbitrary initial con-
ditions. Note that for the trivial initial condition K;j(t =0) =0, its
solution is given by time dependent associated Laguerre polyno-
mial [19].

From the equation for M} n(z. D), Eq. (9) above, one easily obtains
the equation for Qy(w,t) =w"M} (z= w2, t). This reads
% Qy (w, t)———a2 QY (w,t) — aWQ,,<w )

V v
+an (w, t). (10)
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This is the announced before, first new result of the Letter. It will
be also useful to consider the equation for the Cole-Hopf trans-
form of Q) (w,t), fy = %BW In(Qy (w,t)). This object identifies
with the average resolvent in the large n limit. After a rescaling
of the time, T = Mt, one gets from Eq. (10)

n+v

3rf,l) + fr;)awf,;)

1 1 1 V)2 1

:_%[33vfr‘,)+wawfr;}_mf;j|_(ﬁ> w3 (11)
where we have separated on the left-hand side the terms that sur-
vive the large n limit, and on the right-hand side the terms that are
explicitly suppressed by powers of 1/n. Note the crucial role played
by the rescaling of time in arriving at this equation. The motiva-
tion behind this rescaling is that the diffusion associated with the
random walks is taking place over a time scale that is larger, typ-
ically by a factor n, than the time scale corresponding to the local
rearrangements of the eigenvalues due to their mutual repulsion
[9,19]. After rescaling, the diffusion terms are dwarfed by a factor
1/n, and the large n dynamics is dominated by repulsion. The last
term, of order 1/n? finds it origin in the kinematical zero modes
present when v # 0.

4. Large n limit

We consider now the limit n — oo, with v constant. We set
g(w, 1) =limy o fy (W, 7). Eq. (11) reduces then to the inviscid
Burgers equation [1,20,21], independent of v:

0 g(w,7) + g(w, T)dwg(w, ) =0. (12)

It can be solved using complex characteristics. We choose the sys-
tem to be initially in a chiral symmetric state, with eigenvalues lo-
calized at +a. The characteristic lines are given by w =& + 1 g (&),
with

W=gw.r=0=+(— 4 L J=_W (13)
Sow)=gwW. =0 =5\ _¢ wta/) w2—a?

The solution g(w, t) is constant along the characteristics, meaning
g(w, 1) = golé(w, 7)]. By eliminating &, one obtains an implicit
equation for g:

t2g% —2twg?+ (W? —a® +1)g—w=0. (14)

This equation can be solved by elementary means, and well-known
results are recovered. In fact, the change of variables w = w//T,
d=a/s/7, and Gg(w) = /Tg(w+/T, T) transforms this equation
into G2, — 2wG2 + (w? — d? + 1)Gy = w, an equation for a time-
independent resolvent G that has been obtained in this context
using different techniques [22-24]. In previous studies, the param-
eter d was introduced as the “deterministic” part of the chiral
matrix (with K in Eq. (3) replaced by K + d, d being fixed and
K random), in order to control the approach to the chiral transi-
tion. The aforementioned change of variables renders transparent
the dynamics captured by the Burgers equation: For small time, i.e.
7 < a?, the spectral density remains localized in humps centered
around the values +a. As time reaches the critical value 7, = a?
(corresponding to d = 1 in the static approach), the two domains of
the spectrum merge at the origin, which we picture as the collision
of two spectral shock waves. A finite “condensate” then develops,
and chiral symmetry is spontaneously broken.

We now recover these features by studying the singularities of
the characteristics, and the behavior of the solution in the vicin-
ity of these singularities. This brief discussion will pave the way

for the scaling analysis to be performed in the next section. Sin-
gularities appear when characteristics start to cross (appearance of
a spectral shock wave). This occurs for values of & that obey the
equation,

L B S R (15)
g e, Solsel

that is

(® +£2) = (82 —a?)’. (16)

The values of & correspond to the edges of the spectrum when
T < T, = a?. At the critical time 7. = a2, where the two humps
of the spectrum start to merge, the equation for & admits a dou-

ble solution at & = 0, which splits into two purely imaginary and

opposite solutions when 7 > a2,

In order to study the behavior of g at the edge of the spectrum,
we expand go in the vicinity of a singular point

1
g0(8) = go(&) + (£ — &) gp(&c) + 5 E- )20 (&)

1
+g($—5c)g6"(5c)+---. (17)

When T < a?, gp(&c) = —1/7 and, using go = (w — £)/7, we get

w—m=§@—mﬁwm+~u (18)

One can then easily invert the relation between w and &, and get
(for the rightmost edge)

E—b==x #VW_WD (19)
78y (6c)

so that

g(w, 7) = go(§) = go(&c) + (§ — &c)8o(6c)

1 2
=206 F -\ [ VW — W, (20)
T\ 180(0)

which exhibits the familiar square root behavior of the spectrum
near its (right) edge.

For T =a?, a similar analysis taking into account that go(&.) =
0 = g (&), so that the cubic term must be kept, yields (for w, = 0)

w13
gwo=(-5) - (21)
For time T > a?, we have g(w =0,7) = go(&.(w =0, 7)) =
_ya-t

= L which is imaginary and hence directly proportional to the
spectral density p(0).

The behavior of g(w) at the edge of the spectrum deter-
mines the average eigenvalue spacing in the limit of large matri-
ces. A singularity ~ |w — wc|? yields a level spacing ~n~% with
8 =1/(1+ ). We have therefore § =2/3 for T <a?, § =3/4 for
7=a? and § =1 for T > a®. We shall exploit these properties in
the next section.

5. Critical properties of the characteristic polynomial

In this section we carry out a scaling analysis of the aver-
age characteristic polynomial Q (w, T), or its Cole-Hopf transform
f(w, 1), in the vicinity of the singular points. To that aim, we set

Iy — g0 +n77 x(s, 1), (22)
with y =1—4, and s and x (s, T) remain finite as n — oo.

w=w,+ n"ss,
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5.1. Airy edge

Let us focus first on the left edge of the positive part of the
spectrum, for T < a2, where we expect the solution to be of the
form (see Eq. (20))

v , 2(w — wy)
,T)~ c e 23
fo (W, )~ go(&c) + 8o (&c) el &) (23)

This exhibits a square root singularity (6§ =2/3), and in line with
the discussion above we set w = w, + n—%s and i — go&) +

n‘%x(s, 7). (Notice that go(&) is a function of T only, go(&) =
dr w¢.) Substituting this ansatz into Eq. (11), and keeping only the
dominant terms as n — oo, we get (with go(&) = 9:go(&))

. 1 .
Bo(éo) + X Dsx + 505 x =0=0p(2p&o(c) + X* +3sx).  (24)

This equation is easily integrated, x2 + sy + 2s80(&) + u(r) =
0, with u(r) an arbitrary function of 7. Defining x(s,7) =
dsIn¢(s, T) and shifting s =5 — u(r)/(2€o(&)) (with ¢(s, 1) =
¥ (s, 7)) one transforms the equation above into the equation for
the Airy function, agtlf +280(&c)py¥ = 0. The looked for solution is
therefore

. .1 u

P (s, T)=Al[—(2g0)3<5+—.>]. (25)
280

The arbitrary function u(t) can be determined by a careful match-

ing of the asymptotic form as s — oo of the solution to its large N

limit. One then finds that u actually vanishes [19].

5.2. Bessel universality

For T > a?, there is no singular behavior (5§ = 1). So, we set w =
n~ls and fY = x. In the large n limit (at v constant) we obtain,
following the same manipulations as above, the following partial
differential equation:

2

_ 2 X Vv
0_33<X +85X+?_s_2>’ (26)

which integrates to x2 + dsx + % — % + u(t) = 0. Then, setting
X (s,T) =0sIn¢ (s, T) we obtain

s202¢ + sdsp + ¢[s*u(r) —v?] =0, (27)

whose solution is

¢(s,7) = Ju[svu()]. (28)

The determination of the arbitrary function u(t) proceeds as in the
previous case, by matching the asymptotic x (s, 7) ~ —iy/u(t) with
the large N solution. This gives /u(t) =/t —a%/t. We recover
the scaling of the ratio of spectral densities discussed for instance
in [25-27].

5.3. Bessoid (axially symmetric Pearcey) universality

Finally, we move to the case of T = 7. = a?, which will lead
to the second new result of this Letter. As we have shown above,
at T = a?, the two pre-shocks collide. Before the collision, these
pre-shocks are accompanied by oscillations of the Airy type. Our
purpose now is to describe the modification of the pattern of os-
cillations for t close to 7.. To perform this analysis, it is most
convenient to start from the diffusion equation obeyed by the
characteristic polynomial, i.e., Eq. (10) which, after changing ¢t into
T = Mt, we rewrite as

1 v
owQ, (w, 1)
w

v " a2
a'1,'Qn (Wa T) - a Qn( ) 4M

2

4M AMw?
This equation is to be solved with the initial condition Q) (w,
7 =0) = w’ (w2 — a®)V (where the function of w, (w2 —a?)N is
defined with a cut between —a and a). It can be verified by a di-
rect calculation (that does not require the explicit calculation of
the integral below), that

Q, (w, 7). (29)

exp(igy)oo ) )
w
QY (w,7)=Cr~! V' exp (M—: y )
0

2Myw
(22

where C = (—1)"*1/22M, is a solution with the proper initial con-
dition. (For v = 0, it agrees with a known solution [28].) The
y-integral runs over a half-line that starts at the origin and goes
to infinity, making a constant angle ¢, = arg(y) with the real axis,
with —m < arg(y) < . For the integral to be convergent, we re-

quire § < |¢y| < —”. The modified Bessel function I, (x) has the

following asymptotic expansion limyj e Iy (%) > —/_;nxe"

2Myw
T

—a®)"dy, (30)

, valid for

larg(x)| < % (see [29]; here x = ). This is useful in particular
to verify the initial behavior. Indeed, as T — 0, one may estimate
the integral using the saddle point method. The saddle point equa-
tion yields y + w = 0, which fixes in particular arg(y) = arg(—w).
This new condition for ¢y, together with the convergence condi-
tion noted above, are easily seen to be compatible with the condi-
tion of validity of the asymptotic expansion of the Bessel function.
In turn, these conditions limit the allowed arguments of w to
Z <larg(w)| < 37”.

The integral representation (30) of the characteristic polynomial
allows us to study the vicinity of the critical point. We note that
the saddle point equation reads (in the large n limit)

J + w + % =0. (31)
T T y*—a

Identifying y = —&, we recognize the equation for the character-
istic lines. This indicates how the large n dynamics is coded in
this integral. We shall focus more specifically at the critical point,

w=0, y=0, T =a?. In this regime, we may expand In(a® — y?) ~
In(a?) — ﬁ—zz - %, and obtain
5 exp(igy)oo
aNerr—1 exp(MW ) / yr
T
0
Ny* Ny? My? 2Myw
xexp[——y4——};+—y}lu< Y >dy, (32)
2a a T T

with ¢’ = C(—1)N. To capture the critical behavior also as a func-
tion of time, we set T = a® + 6. Then Eq. (32) becomes

exp(igy)oo

Mw?2
aZ(Nfl)C/eXp< ‘;V ) f yv+1
a
0
Ny* y2 My29 2Myw
xexp[—ﬁ—i- s I 2 dy. (33)

This expression suggests the following change of variables that will
ensure a smooth large n limit:

_3 _1 5
w=n"4aq, 0 =n"2a“p. (34)
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We then define

Bv(q7 Q)= N Ilvillzl)ooC/_la_”nVTJr2 (_])U+1

x QY (n‘%aq, a + n_%aztp), (35)
where the limit is taken with v constant. Finally
exp(igg+im)oo
Bv(q’ (/)) — (_l)v+1 / uv+1
0

1 1
X exp (—Zu“ — Euzgz))h,(qu)du. (36)

This exact scaling function for the characteristic polynomial is the
second important result of this Letter. We note that in the spe-
cial case ¢ =0, v =0, g =im, where m is real, the above result
reduces to the microscopic QCD partition function at the critical
point obtained using other methods (Eq. (8) in [30]). This agree-
ment provides another test for the validity of our approach. Fur-
thermore, (36) has a form very similar to the Pearcey function,
which gives the asymptotic behavior of the characteristic polyno-
mial in the case when gap closes for GUE [31] or in the case of
unitary diffusion on the circle [5]

o0

P(q,¢) = / dy exp(—y* — y*¢ +qy). (37)

—0o0

Here q is the rescaled angle representing the position of the eigen-
value on the unitary circle and ¢ parameterizes the fluctuations
around the critical area. The critical indices that determine the
scaling with n in Eq. (34) are identical to those in the Pearcey in-
tegral, but the form of the integral is different. The reason is the
chiral symmetry, which imposes an additional polar symmetry of
the spectrum, trading the exponential function of g in the Pearcey
integral (37) for a Bessel function in Eq. (36).

6. Conclusions

In this Letter we have obtained an exact differential equation
for the average characteristic polynomial of a chiral random matrix,
and its Cole-Hopf transform. For the latter, the equation takes the
form of a generalized viscid Burgers equation, where the viscosity
is proportional to the inverse of the size of the matrix, but with
a negative sign. This allowed us to provide a complete description
of the full critical behavior of the average characteristic polynomial
in chiral QCD, based on a single equation. In particular, we consid-
ered the case of chiral Gaussian Unitary Ensembles and we have
identified the exact universal scaling function (Bessoid B"(q, ¢)) in
the vicinity of the chiral critical point for the average characteris-
tic polynomial. We did not analyze in this Letter the properties of
the average of the inverse characteristic polynomial, but we have
checked that if fulfills similar equations, albeit with non-trivial ini-
tial conditions (singular at w = 0), alike in the cases of unitary and
GUE diffusions.

Since F scales like /N, more and more eigenvalues of the
Dirac operator fall into the universal window when the number of
colors tends to infinity, the volume of the lattice being kept finite.
This suggests, that the present study is relevant also for analyzing
the spontaneous breakdown of chiral symmetry at finite volume
and large N, QCD, which was observed, and explained by Neu-
berger and Narayanan [32]. For small lattice sizes, chiral symmetry
is unbroken, while at some critical scale L. a condensate is formed.
The same authors [33] have also observed, that the N.-dependence
of the level spacing closest to zero goes from 1/N. in the broken

chiral symmetry phase to 1/N?/3 in the symmetric (gapped) phase.
At L = L, the critical scaling changes to 1/N3/# behavior and the
condensate vanishes at the critical size L. as +/L — L. These re-
sults are in agreement with our analysis.

The critical universal scaling function (Bessoid) for large N,
Dirac operator resembles closely the critical universal scaling func-
tion (Pearcey’s cuspoid) for the weak to strong coupling transition
in Yang-Mills theory at large N.. It would be interesting to study
numerically both transitions simultaneously (at least in some sim-
ple model like [32]) to see the interplay between the cuspoid and
the Bessoid, or, in other words, the relation between the critical
size L. for chiral symmetry breakdown and the critical area ~ L?
for the weak to strong coupling transition in Yang-Mills theory.
Of particular interest would be to measure on the lattice the mi-
croscopic spectral density exactly at the point of the transition. As
far as we know, the microscopic spectral density at criticality was
constructed explicitly only for a =Ny 4 |v| =0 case [30], and was
never checked by the lattice simulation. Taking into account the
still ongoing discussion on the nature of chiral phase transition, its
relation to confinement and Anderson localization [34,35], lattice
verification of analytic predictions for microscopic densities at the
critical point may be a powerful tool to shed more light on this
aspect of strong interactions.
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