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Abstract. We consider a mathematical model which describes the adhesive

contact between a linearly elastic body and an obstacle. The process is static

and frictionless. The normal contact is governed by two laws. The first one

is a Signorini law, representing the fact that there is no penetration between

a body and an obstacle. The second one is a Winkler type law signifying that

if there is no contact, the bonding force is proportional to the displacement

below a given bonding threshold and equal to zero above the bonding threshold.

The model leads to a variational-hemivariational inequality. We present the

numerical results for solving a simple two-dimensional model problem with

the Proximal Bundle Method (PBM). We analyze the method sensitivity and

convergence speed with respect to its parameters.
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1. Introduction

The laws which describe contact between an elastic body and a foundation often are
discontinuous, nonmonotone and multivalued. Such laws lead to problems which
can be represented by means of hemivariational inequalities (HVIs) which have been
introduced by Panagiotopoulos in 80’s (see for example [17]). The requirement for
the contact law to be possible to describe by means of HVI is the existence of a locally
Lipschitz superpotential such that the multivalued law corresponds to its Clarke
subdifferential. This is not possible for a nonpenetration Signorini law for which
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the (convex) superpotential assumes infinite values. Therefore solving the contact
problems which involve both nonmonontonicity and infinite values (which is the
case in nonpenetration problems) requires the so called variational – hemivariational
inequalities.

Hemivariational inequalities describing various problems of contact mechanics
were investigated for example in [17] and, later, in [15]. Variational – hemivarional
inequalities in the context of contact mechanics were studied, among others, by
Panagiotopoulos [18], Motreanu [16], Liu [11, 12], Carl [2] and Kovtunenko [8, 10].

This article deals with the numerical solution of variational hemivariational in-
equalities. We consider a static problem which represents a simplified model of
unilateral adhesive contact between a linear elastic body and a foundation. The ad-
hesive law similar to the one used in this article (see formulae (8)–(9) in the sequel)
was used in [7] (Example 6.4) and [6] (Application 6.6.8).

After discretization using the Finite Element Method (FEM), a variational-he-
mivariational inequality can be represented as the nonconvex optimization problem
[7]. This problem can be solved numerically using the nonsmooth optimization
methods like the Proximal Bundle Method or the Bundle Newton Method. Such
approach is used in [7] (see also [13, 14]). The Proximal Bundle Method (PBM) has
parameters which are to be chosen arbitrarily (Makela [13, 14] describes the method
of the adaptive choice of one parameter uk which is key for the convergence rate).
The main aim of this article is to investigate the sensitivity of the PBM applied to
a variational – hemivariational inequality describing the adhesive unilateral contact
with respect to these parameters. The convergence rate for the PBM is known to
be very slow: for the convex potential one requires O(1/ε3) iterations to obtain the
error of order ε (see [9]). Here we present the numerical convergence rate analysis
for the nonconvex problem originating from the adhesive contact model.

The example problem used for computations is similar to the delamination prob-
lem used as a benchmark in [7] (Example 6.4), however, the structured finite ele-
ment mesh used in this article consists of the rectangles with two diagonals (so called
crossed mesh) and such mesh in known to avoid the numerical locking effects in elas-
ticity problems in contrast to the mesh with one diagonal [1]. For the benchmark
problem the detailed analysis of the PBM convergence with respect to the parameter
choice is presented.

The structure of the article is the following. After Section 2 in which the required
definitions are introduced, we present the abstract problem in Section 3. In Section
4 the PBM method is recalled. Section 5 presents the benchmark problem used for
computations. Section 6 is divided into few parts presenting sensitivity tests and
conclusions.

2. The notation and definitions

Let Ω ⊂ Rd, where d ∈ {2, 3} be a nonempty, open and bounded set with a regular
(Lipschitz) boundary. This set is occupied by the linearly elastic body. The bound-
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ary of Ω is separated into three pairwise disjoint subsets ∂Ω = Γ̄C ∪ Γ̄D ∪ Γ̄N . We
denote the space of second order symetric tensors on Rd by Sd. We use · and | · | as
the scalar product and the euclidean norm on Rd and Sd respectively. Moreover we
shall use the notation

H = L2(Ω)d = {u = (ui) |ui ∈ L2(Ω) },

Q = {σ = (σij) |σij = σji ∈ Q },

H1 = {u = (ui) | ε(u) ∈ Q },

Q1 = {σ ∈ Q |Divσ ∈ H }.

Here ε : H1 → Q and Div : Q1 → H are the deformation and divergence operators,
respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i),

Divσ = (σij,j),

where i and j run between 1 and d, and the sumation convention over repeated
indices is adopted. Index after comma denotes a partial derivative with respect to
the corresponding component of the independent variable.
We denote the normal and tangential components of σ by σν and στ . If σ is smooth
enough, then

σν = (σn) · n, στ = σn− σνn.

Definition 1. The Clarke generalized directional derivative (see [3]) of a locally
Lipschitz function h : X → R at the point x ∈ X in the direction v ∈ X, where X is
a reflexive Banach space, denoted by h0(x; v), is defined by

h0(x; v) = lim sup
y→x,λ↘0

h(y + λv)− h(y)

λ
.

The Clarke subdifferential of h at x denoted by ∂Clh(x) is a subset of X∗ given by

∂Clh(x) = { ξ ∈ X∗ : h0(x; v) ≥ 〈ξ, v〉X∗×X for all v ∈ X }.

The subdifferential of a convex functional will be denoted by ∂Conv.

3. The problem formulation

In this section we present a contact problem of elasticity as well as its weak formu-
lation and the corresponding Galerkin problem. The body is assumed to be linearly
elastic and the process is assumed to be static. Furthermore we need the following
assumptions on the data:
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H(E): the elasticity operator E : Ω × Sd → Sd is a bounded symmetric positive
definite fourth order tensor, i.e.,


(a) Eijkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d,

(b) Eσ · τ = σ · Eτ, ∀σ, τ ∈ Sd, a.e. in Ω,

(c) Eτ · τ ≥ m|τ |2 ∀ τ ∈ Sd, a.e. in Ω with m > 0.

(1)

H(f): the force and the traction densities satisfy

f0 ∈ L2(Ω)d, f2 ∈ L2(Γ2)d, (2)

H(ν): the threshold at which the bonds between the body and the foundation break
is denoted by M > 0 and the force rate of the bonds is denoted by a > 0.

Problem PM . Find a displacement field u : Ω→ Rd and a stress field σ : Ω→
Sd such that

σ = E(ε(u)) in Ω, (3)

Div σ + f0 = 0 in Ω, (4)

u = 0 on ΓD, (5)

σν = f2 on ΓN , (6)

uτ = 0 on ΓC , (7)

uν ≤ 0 on ΓC , (8)

−σν ∈


[0,∞) if uν = 0

{auν} if uν ∈ (−M, 0)

[0,−aM ] if uν = −M
{0} if uν < −M

on ΓC . (9)

The condition (7) means that there is no tangential displacement on the contact
boundary. It is easy to observe that in the real situation the elastic body could
displace tangentially on the boundary under the influence of the external and mass
load. We see that the condition (7) is a simplification, but in some cases, especially
when displacements are small it could be a good approximation of the real situation.

The normal contact multivalued law (8) means that there is no penetration be-
tween the body and the foundation while the law (9) means that if there is contact
(i.e., uν = 0) then the reaction force assumes some nonnegative value, and if there is
no contact the bonding force is proportional to the displacement below the bonding
threshold and equal to zero above the bonding threshold.

In order to formulate the laws (8) and (9) in the inclusion form, we introduce
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the following functions

j1(s) =


aM2

2 if s < −M
as2

2 if s ∈ [−M, 0]

0 if s > 0.

(10)

j2(s) =

{
0 if s ≤ 0

+∞ if s > 0.
(11)

Observe that these laws cannot be writen by means of the Clarke subdifferential
only (since the notion of the Clarke subdifferential requires the function to be locally
Lipschitz and in the presented case j2 assumes infinite values). The functional j1 is
locally Lipschitz and j2 is convex. Moreover (8)–(9) is equivalent to say that

−σν ∈ ∂Clj1(uν) + ∂Convj2(uν)

Fig. 1. The plot of the multivalued law used in the analyzed model

An important property of j1 used in the sequel will be

H(j1): for all r ∈ R and for all η ∈ ∂Clj1(uν) we have |η| ≤ K with a positive real
constant K.

3.1. The weak formulation and Galerkin method

We define the space

V = { v ∈ H1 : v = 0 on ΓD, vτ = 0 on ΓC }.

Moreover we define an operator A : V → V ∗ by

〈Au, v〉 =

∫
Ω

Eijklεij(u)εkl(v) dx
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and a functional f ∈ V ∗ by

〈f, v〉 =

∫
Ω

f0 · v dx+

∫
ΓN

f2 · v dΓ.

The norm in the space V is defined as ‖v‖2V = 〈Av, v〉. This expression defines the
norm equivalent to the Sobolev norm H1(Ω)d due to the Korn inequality and H(E).
Furthermore we denote by K ⊂ V the cone

K = {v ∈ V : vν ≤ 0 on ΓC}.

Now the weak formulation of our problem will be the following.

Problem PV . Find a displacement field u ∈ K and ξ ∈ L2(ΓC) such that
ξ ∈ ∂Clj1(uν) a.e. in ΓC and for every v ∈ K we have

〈Au− f, v − u〉+

∫
ΓC

ξ(vν − uν) dΓ ≥ 0. (12)

The existence of solutions to the above problem is well known (see [6, 7]). For
the sake of a numerical solution of the above problem we define the sequence of
finite element spaces {Vn}∞n=1 which are finite dimensional and approximate V from
inside, i.e., cl (

⋃∞
n=1 Vn) = V . We denote Kn = Vn ∩ K and moreover we assume

that cl (
⋃∞
n=1Kn) = K. The Galerkin problem will be defined as follows.

Problem PVn
. Find a displacement field un ∈ Kn and ξn ∈ L2(ΓC) such that

ξn ∈ ∂Clj1(unν ) a.e. in ΓC and for every vn ∈ Kn we have

〈Aun − f, vn − un〉+

∫
ΓC

ξn(vnν − unν ) dΓ ≥ 0. (13)

Theorem 1. Under assumptions H(E), H(f), H(ν) if (un, ξn) is a sequence of
solutions to PVn

, then for a subsequence we have un → u weakly in V and ξn → ξ
weakly in L2(ΓC) where u and ξ solve PVn .

For the proof of Theorem 1 see [4].

3.2. The minimization problem

The numerical method will consist in solving the following minimization problem.

Problem MVn . Find a displacement field un ∈ Kn such that for the functional

Jn(v) =
1

2
〈Av, v〉 − 〈f, v〉+

∫
ΓC

j1(vν(x)) dΓ
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we have Jn(un) = minv∈Kn
Jn(v).

Theorem 2. For every n the functional Jn has a global minimum over Kn.
Moreover this minimum is a solution of PVn

.

For the proof of Theorem 2 see [4].

Let us assume that {v1, . . . , vn} is a base of Vn. We define Πn : Vn → Rn as the
mapping which associates to the function v ∈ Vn its coordinates in this base. Now
Kn will be the cone defined as Πn(Kn). The problem MVn

can be equivalently
reformulated as follows.
Problem MRn : Find x = (x1, . . . , xn) ∈ Kn such that for the functional

Jn(z) =
1

2
zTAz − FT z +

∫
ΓC

j1

((
n∑
i=1

zivi

)
ν

(z)

)
dΓ

we have Jn(x) = minz∈Kn
Jn(z).

In the above problem the matrix A is defined as A = {〈Avi, vj〉}ni,j=1 and the vector
F as F = {〈f, vi〉}ni=1.
Obviously un solves MVn if and only if Πn(un) solves MRn . Numerically we will
solve this problem using the Proximal Bundle Method.

4. Proximal Bundle Method

The Proximal Bundle Method is used for nonsmooth and nonconvex optimization of
locally Lipshitz functionals. It can be used as a blackbox tool to minimize a func-
tional Jn : Kn → R provided for any x ∈ Kn we can compute Jn(x) and we can find
(one of possibly many) η ∈ ∂ClJn(x).
The method is well known (see [13, 14]) and has been used in the context of hemivari-
ational inequalities (see [7]) however it uses many parameters which are somewhat
arbitrary in choice and no sensititvity analysis of the method with respect to the pa-
rameter choice in application to hemivariational inequalities is known. This article
aims to fill this gap.
The main idea of the method is the construction of two sequences xi, yi ∈ Rn. The
points xi will converge to the minimum of Jn and yi will be the auxiliary points at
which the subdifferentials will be computed and accumulated during the course of the
algorithm. The elements of ∂ClJn(yi) which will be computed during the algorithm
will be denoted by ηi. The starting point for the iteration can be arbitrary x1 = y1.
In our case x1 = y1 = 0.

Each iteration step consists of two phases:

(1) Direction finding.

(2) Line search.
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Direction finding. In the k-th iteration step we have two sequences of points xj ,
yj and a set of subgradients ηj , where j ∈ {1, . . . , k}. The main aim of the direction
finding phase is to find the direction dk ∈ Rn. The idea is to approximate the
functional Jn by the piecewise linear function Ĵkn defined below.

Ĵkn(x) = max
j∈{1,...,k}

{Jn(yj) + ηTj (x− yj)},

which can be written as

Ĵkn(x) = max
j∈{1,...,k}

{Jn(xk) + ηTj (x− xk)− αkj },

where αkj is the linearization error defined by

αkj = Jn(xk)− Jn(yj)− ηTj (xk − yj) for all j ∈ {1, . . . , k}.

If the functional Jn is convex, then it is easy to show that

Ĵkn(x) ≤ Jn(x) for all x ∈ Rn

and αkj ≥ 0 for all j ∈ {1, . . . , k} (see [14]). In the nonconvex case Ĵkn(x) could be

greater than Jn(x) and αkj could be less than zero. It is the reason why αkj was
replaced by the subgradient locality measure (see [13]). It is

βkj = max{|αkj |, γ(skj )2},

where γ ≥ 0 is the distance measure parameter and skj defined by

skj = ‖xj − yj‖+
k−1∑
i=j

‖xi+1 − xi‖

is the distance measure. Note that βkj ≥ 0 for all j ∈ {1, . . . , k}.
To calculate the search direction dk we replace the original problem by the cutting
plane problem (see [13],[14]).

Problem CP {
minimize Ĵkn(xk + d) + 1

2ukd
T d

subject to xk + d ∈ Kn,

where 1
2ukd

T d is the regularizing quadratic penalty term. This regularization is
needed to guarantee the existence of the solution dk. The parameter uk is added to
improve the convergence rate and to accumulate some additional information about
the curvature of Jn around xk (see [13, 14]).
The problem CP is still a nonsmooth optimization problem but it can be rewritten
as a smooth quadratic programming problem.

Problem QP Find the solution (dk, vk) ∈ Rn+1 of{
minimize v + 1

2ukd
T d

subject to − βkj + ηTj d ≤ v for all j ∈ {1, . . . , k} and xk + d ∈ Kn.
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This problem is well known and can be solved by standard convex quadratic pro-
gramming algorithms [13]. In the computations we used the library for quadratic
programming, which is based on the method proposed in [5]. This method is based
on the Sequential Minimal Optimization algorithm with an improved working set
selection strategy.

Line search. In this phase we are looking for the most appropriate values for
xk+1 and yk+1. Notice that dk calculated in the previous section minimizes only
the approximation Ĵkn so xk+1 = xk + dk is not necessarily the best possible value.
We know that dk is a good direction, now we consider the problem of determining
how long should be the step size into that direction. We assume that mL ∈ (0, 1

2 ),
mR ∈ (mL, 1) and t̄ ∈ (0, 1] are fixed method parameters. Firstly we search for the
largest number tkL ∈ [0, 1] such that tkL ≥ t̄ and

Jn(xk + tkLdk) ≤ Jn(xk) +mLt
k
Lvk, (14)

where vk is the descent ratio and vk = Ĵkn(xk+dk)−Jn(xk) < 0. If such a parameter
tkL exists we take a long step

xk+1 = xk + tkLdk, yk+1 = xk+1.

Otherwise, if (14) holds but 0 < tkL < t̄, then a short step

xk+1 = xk + tkLdk, yk+1 = xk + tkRdk

is taken, where tkR > tkL and

−βk+1
k+1 + ηTk+1dk ≥ mRvk. (15)

If tkL = 0, then we take a null step

xk+1 = xk, yk+1 = xk + tkRdk.

In the long step we have a significant decrease in the value of the functional Jn and
there is no need for detecting discontinuities in the gradient of Jn. In the short step
and the null step there exists discontinuity in the gradient of Jn. Then the formula
(15) ensures that xk and yk+1 lie on the opposite sides of this discontinuity, and
a new subgradient will force an important modification on the next direction finding
phase. In the computations a simple bisection algorithm is used for finding tkL and
tkR. In both cases we take the biggest possible values.

Stop criterion. The iteration is terminated if vk ≥ −εs, where εs > 0 is a final
accuracy tolerance supplied by the user (see [13, 14]).

The method has five parameters (uk, γ, t̄,mL,mR). In the sequel we analyze the
convergence speed with respect to these parameters.
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5. The problem setup

The computations were performed on an academic two dimensional example. The
physical setting is shown in Fig. 2.

Fig. 2. The physical setup for the test problem

We assume that Ω = (0, L1) × (0, L2) ⊂ R2 and the boundary is divided into
regions ΓD = {0}× (0, L2)∪{L1}× (0, L2), ΓN = (0, L1)×{L2} and ΓC = (0, L1)×
{0}. The two dimensional example can be treated as an approximation for a three
dimensional case if domain Ω is the cross-section of a three dimensional linear elastic
body. In our case the body is assumed to be thin such that the plane stress hypothesis
can be assumed. We furthermore assume that the body is isotropic and homogeneous
so that the constitutive tensor can be described using only two parameters: the
Young modulus E and the Poisson ratio ν. The exact form of the constitutive
tensor used in the computations is the following

(Eτ)αβ =
Eν

1− ν2
(τ11 + τ22)δαβ +

E

1 + ν
ταβ , 1 ≤ α, β ≤ 2, (16)

where δαβ is the Kronecker symbol.
The following data was used in the computations

L1 = 40 cm, L2 = 4 cm, ν = 0.33, E = 69GPa.

The values ν,E correspond to the physical properties of aluminium. The forces were
assumed to be the following

f0 ≡ (0, 0), f2 =

{
(0, 0.69GPa) on (0, L1/2)× {L2},
(0,−0.345GPa) on (L1/2, L1)× {L2}.
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Fig. 3. The example mesh used in the computations for the test problem

The values used in the contact law chosen for the computations were

M = 2 mm, a = 69 GPa/m.

In order to avoid the numerical locking effects we used the structural crossed mesh
of triangles as presented in Fig. 3.

Fig. 4. The deformed mesh obtained as the computation result for the test problem

The deformed mesh after the computations for 710 degrees of freedom (mesh
40 × 4) is presented in Fig. 4. The normal stress and displacement on the contact
boundary are presented in Fig. 5.

The verification of the method correctness is done via calculation of the residual
and comparing it to the deformation obtained from the contact law. The computed
total normal force and displacement values versus the ideal values from the contact
boundary condition are presented in Fig. 6.

6. Tests of sensitivity

The convergence speed of the Proximal Bundle Method was tested for various values
of its parameters. According to [13, 14] the key parameter is uk. In the sequel we
present the analysis of the convergence speed for various values of uk and other
parameters. The values of yk in all the simulations were accumulated for 200 steps
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Fig. 5. The total normal force on every element and displacement on the contact
boundary obtained for the test problem. The values are divided 4 times for visibility

of the iteration. After every 200 steps the stop criterion was checked and if it did
not hold the points yk were deleted from memory and the procedure was repeated
starting from the obtained xk.

6.1. Dependance of the convergence speed on uk for the mesh 40 × 4

In this section the dependance of the convergence speed of the PBM on the choice of
uk for the mesh 40× 4 (710 degrees of freedom) is analyzed. The minimal obtained
values of the functional are summarized in Tab. 1. Moreover in this table the total
number of iteration steps until the stop criterion was obtained as well as the number
of long, short and null steps, respectively, are presented. The other parameters
in this and the following simulations were: γ = 0.5,mL = 0.001,mR = 0.5, t̄ =
0.003, εs = 10−13. The starting point for all the cases was the function constantly
equal to 0.

Clearly for too small and too large uk the convergence occurs after large number
of steps comparing with the intermediate values of uk. Moreover for large values of
uk we have mostly null steps, while for too small values we have mainly short steps.
For the optimal uk values (as it is clear from Tab. 1 these are values from 0.0007
to 0.001) we ave mostly short steps and some null steps. The fastest convergence
rate equal to −14, i.e., J(xk) − Jmin ≈ Ck−14 was obtained for uk = 0.0008. The
rate close to −3 (in accordance with [9]) was obtained for uk = 0.0005. For values
uk = 5 and uk = 0.5 during the iteration history the discontinuity which was hard
to pass was encountered and the objective did not improve significantly for many
iterations as it is seen in the logartihmic graph.
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Fig. 6. The theoretical graph of the total normal force vs. the displacement on the
contact boundary (continuous line) and the respective values obtained for the points
on the boundary (dots)

6.2. Dependance of the convergence speed on uk for the mesh 80 × 8

Now we present the analysis of the convergence speed of the PBM for the mesh 80×8
(2702 degrees of freedom). Since the Galerkin space Vn of admissible solutions is
larger, the optimal objective value is smaller now. As it is clear from Tab. 2 and
Fig. 8 the optimal uk value is 0.0002 which corresponds to the value for the mesh
40×4 divided by 4. Moreover the optimal convergence rate is again about −14. We
can hypothesise that uk ∼ h2, where h is the mesh size parameter.

6.3. Dependance of the convergence speed on uk for the mesh 160 × 16

The problem considered in this subsection has 10526 degrees of freedom. If the
hypothesis that uk should be proportional to h2 is right, then the optimal value of
uk for this mesh should be about 0.00005. The numerical tests, as it is clear from
Tab. 3 and Fig. 9 indeed show that for this value the convergence was fastest and
the optimal objective value was only slighly worse than for uk = 0.00002.

6.4. Tests of the PBM behavior for the changing uk value

In [13] it is suggested that the adaptive changing of uk should improve the algorithm
efficiency. In order to test this, we took the solution obtained for the mesh 80 × 8
for uk = 0.0002 using εs = 10−13 and run the optimization algorithm again with
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Tab. 1. Results of tests for various uk values for the mesh 40× 4

uk Iterations Jmin[10−4] J(x1400)[10−4] long short null
5 40200 –5,28865985 –5,27435748 4308 177 35715

0,5 6600 –5,28867025 –5,28839651 2573 179 3848
0,05 3000 –5,28867185 –5,28867134 1508 542 950

0,007 2200 –5,28867189 –5,28867187 98 1516 586
0,005 2000 –5,28867194 –5,28867193 39 1377 584
0,003 1800 –5,28867198 –5,28867198 0 1308 492
0,001 1600 –5,28867208 –5,28867208 0 1296 304

0,00095 1600 –5,28867207 –5,28867207 0 1323 277
0,0009 1400 –5,28867207 –5,28867207 3 1179 218

0,00085 1400 –5,28867208 –5,28867208 0 1255 145
0,0008 1400 –5,28867208 –5,28867208 0 1223 177

0,00075 1600 –5,28867206 –5,28867206 9 1343 248
0,0007 1600 –5,28867207 –5,28867207 5 1480 115
0,0005 31800 –5,28867157 –5,28855074 80 30804 916

0,00005 40200 –5,28866695 –5,28546276 82 40118 0

(a) (b)

(c)

Fig. 7. The convergence history for various uk values for the mesh 40×4. The graph
(a) shows the iteration number (x axis) vs the objective value (y axis). The same
graph with the logarithmic scale for both axes is depicted in the graph (b). Selected
plots with fitted lines on the logarithmic scale are depicted in the graph (c)
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Tab. 2. Results of tests for various uk values for the mesh 80× 8

uk Iterations Jmin[10−4] J(x1400)[10−4] long short null
0,005 5600 –5,37504353 –5,37396171 273 4794 533

0,0007 3400 –5,37504373 –5,37502537 0 3294 106
0,0005 2800 –5,37504377 –5,37503723 0 2656 144

0,00045 2800 –5,37504379 –5,37503989 0 2668 132
0,0004 2800 –5,37504381 –5,37504132 0 2716 84

0,00035 2600 –5,37504381 –5,37504232 0 2510 90
0,0003 2600 –5,37504382 –5,37504274 0 2494 106

0,00025 2600 –5,37504386 –5,37504347 0 2480 120
0,0002125 2400 –5,37504387 –5,37504370 0 2316 84

0,0002 2200 –5,37504380 –5,37504370 0 2091 109
0,00005 40200 –5,37504027 –5,37453342 1 40199 0

0,000005 40200 –5,37476454 –5,36815949 0 40200 0

(a) (b)

(c)

Fig. 8. The convergence history for various uk values for the mesh 80×8. The graph
(a) shows the iteration number (x axis) vs the objective value (y axis). The same
graph with the logarithmic scale for both axes is depicted in the graph (b). Selected
plots with fitted lines on the logarithmic scale are depicted in the graph (c)
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Tab. 3. Results of tests for various uk values for the mesh 160× 16

uk Iterations Jmin[10−4] J(x1400)[10−4] long short null
0,0001875 7200 –5,4006638 –5,3794895 0 7116 84

0,00008 6000 –5,4006639 –5,3920934 0 5953 47
0,00005 5600 –5,4006641 –5,3936754 0 5546 54
0,00002 7800 –5,4006642 –5,3942773 0 7608 192

0,000005 40200 –5,4001345 –5,3953643 0 40200 0

(a) (b)

(c)

Fig. 9. The convergence history for various uk values for the mesh 160 × 16. The
graph (a) shows the iteration number (x axis) vs. the objective value (y axis). The
same graph with the logarithmic scale for both axes is depicted in the graph (b).
Selected plots with fitted lines on the logarithmic scale are depicted in the graph (c)
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Tab. 4

uk Iterations Jmin[10−4] long short null
200 1400 –5,375044024 32 29 1339

0,02 21400 –5,375044008 14 402 20984
0,002 800 –5,375043800 0 45 755

0,0002 3000 –5,375043802 0 930 2070
0,00002 2400 –5,375043806 0 613 1787

0,000002 600 –5,375043806 0 232 368

(a) (b)

Fig. 10. The plots showing the decrease of the objective value obtained after the
iteration for the mesh 80 × 8 for the (best) value uk = 0.0002. The solution was
taken as the starting point for the iteration for various values of uk. The plot (a)
shows the objective value (y axis) vs. the number of iterations (x axis) and the same
plot with logarithmic scales for both axes is shown in the plot (b)

εs = 10−15 and various values of uk taking the obtained solution as the starting
point. The results, presented in Fig. 10 and Tab. 4, show, that the objective did
not decrease significantly, so indeed the minimal value was found previously. The
slight improvement of the minimal value was possible for the large values of uk.

6.5. Dependence of the convergence speed on t̄

Now we present the results of the tests of dependance of the convergence speed on
the parameter t̄. In this and the following sections the mesh 40× 4 was considered
and the value of uk was assumed to be 0.00085. The results are depicted in Fig.
11 and Tab. 5. Clearly, the convergence speed and the optimal objective value is
almost independent on the choice of t̄. This parameter, however, influences the rate
between the long and short steps. For small values of t̄ almost all steps are long
while for larger values we have almost only short steps.
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Tab. 5. Results of tests for various t̄ values for the mesh 40× 4

t̄ Iterations Jmin[10−4] long short null
0,3 1400 –5,2886720846 0 1255 145

0,03 1400 –5,2886720846 0 1255 145
0,003 1400 –5,2886720846 0 1255 145

0,0003 1400 –5,2886720849 397 762 241
0,00003 1400 –5,2886720897 1055 175 170

0,0000003 1400 –5,2886720900 1159 14 227
3E-21 1400 –5,2886720900 1159 0 241

(a) (b)

(c)

Fig. 11. The behavior of the algorithm for the mesh 40 × 4 for various values of t̄.
The plot (a) presents the objective value vs. the number of the iteration steps. The
same plots in the logarithmic scale are depicted in the plot (b). The plot (c) shows
the relation between the number of the short and long steps
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Tab. 6. Results of tests for various γ values for the mesh 40× 4

γ Iterations Jmin[10−4] long short null
0,99999 1400 –5,288672113 0 1046 354

0,875 1200 –5,288672107 0 1012 188
0,8 1600 –5,288672103 1217 0 383
0,7 1600 –5,288672102 1265 0 335
0,6 1400 –5,288672076 1292 0 108
0,5 1400 –5,288672085 0 1255 145

0,25 20000 –5,288671623 195 18615 1190

(a) (b)

Fig. 12. The behavior of the algorithm for the mesh 40× 4 for various values of γ.
The plot (a) presents the objective value vs. the number of the iteration steps. The
same plots in the logarithmic scale are depicted in the plot (b)

6.6. Dependence of the convergence speed on γ

This section is devoted to the results of the tests of dependance of the convergence
speed on the parameter γ. The results are depicted in Fig. 12 and Tab. 6. Clearly,
for too small values of γ the algorithm behaves poorly. Above the certain threshold
the convergence speed and the optimal objective value is almost independent on the
choice of γ, with the best results obtained for values equal to about 0.9.

6.7. Dependence of the convergence speed on mL and mR

Now we present the results of the tests of dependance of the convergence speed on
the parameters mL and mR. The results for mL are depicted in Fig. 13 and Tab. 7
and the results for mR are depicted in Fig. 14 and Tab. 8. Clearly, the convergence
speed of the algorithm is not sensitive on the choice of these two parameters.
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Tab. 7. Results of tests for various mL values for the mesh 40× 4

mL Iterations Jmin[10−4] long short null
0,3 1600 –5,288672131 0 1195 405
0,2 1200 –5,288672127 0 1031 169

0,15 1600 –5,288672127 0 1320 280
0,1 1200 –5,288672122 0 998 202

0,05 1400 –5,288672103 0 1197 203
0,1 1200 –5,288672122 0 998 202

0,001 1400 –5,288672085 0 1255 145
0,0001 1400 –5,288672075 7 1210 183

0,000001 1600 –5,288672081 0 1384 216
1E-33 1600 –5,288672075 0 1328 272

(a) (b)

Fig. 13. The behavior of the algorithm for the mesh 40×4 for various values of mL.
The plot (a) presents the objective value vs. the number of the iteration steps. The
same plots in the logarithmic scale are depicted in the plot (b)

Tab. 8. Results of tests for various mR values for the mesh 40× 4

mR Iterations Jmin[10−4] long short null
0,999 1400 –5,288672085 0 1255 145

0,7 1400 –5,288672085 0 1255 145
0,5 1400 –5,288672085 0 1255 145
0,1 1400 –5,288672085 0 1232 168

0,002 1600 –5,288672087 0 1282 318
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(a) (b)

Fig. 14. The behavior of the algorithm for the mesh 40×4 for various values of mR.
The plot (a) presents the objective value vs. the number of the iteration steps. The
same plots in the logarithmic scale are depicted in the plot (b)
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