
ORIGINAL ARTICLE

Anatomy of ovary and ovule in dandelions
(Taraxacum, Asteraceae)

K. Musiał & B. J. Płachno & P. Świątek & J. Marciniuk

Received: 19 June 2012 /Accepted: 11 September 2012 /Published online: 23 September 2012

Abstract The genus Taraxacum Wigg. (Asteraceae) forms
a polyploid complex within which there are strong links
between the ploidy level and the mode of reproduction.
Diploids are obligate sexual, whereas polyploids are usually
apomictic. The paper reports on a comparative study of the
ovary and especially the ovule anatomy in the diploid dan-
delion T. linearisquameum and the triploid T. gentile.
Observations with light and electron microscopy revealed
no essential differences in the anatomy of both the ovary and
ovule in the examined species. Dandelion ovules are anat-
ropous, unitegmic and tenuinucellate. In both sexual and
apomictic species, a zonal differentiation of the integument
is characteristic of the ovule. In the integumentary layers
situated next to the endothelium, the cell walls are extremely
thick and PAS positive. Data obtained from TEM indicate
that these special walls have an open spongy structure and
their cytoplasm shows evidence of gradual degeneration.
Increased deposition of wall material in the integumentary
cells surrounding the endothelium takes place especially

around the chalazal pole of the embryo sac as well as around
the central cell. In contrast, the integumentary cells sur-
rounding the micropylar region have thin walls and exhibit
a high metabolic activity. The role of the thick-walled in-
tegumentary layers in the dandelion ovule is discussed. We
also consider whether this may be a feature of taxonomic
importance.
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Introduction

The Asteraceae (Compositae) family is one of the largest
flowering plant families. With over 24,000 recognized spe-
cies, this family constitutes ca. 10 % of all flowering plants
(Funk et al. 2009). Asteraceae is usually divided into three
subfamilies: (1) the small South American Barnadesioideae,
which contains less than 1 % of the species, (2) the
Asteroideae, which contains ca. 65 % of the species and
(3) the Cichorioideae (syn. Lactucoideae), which comprises
ca. 35 % of the species (Bremer et al. 1992; Funk et al.
2009). However, it should be noted that according to a new
higher classification system there are 12 subfamilies within
Asteraceae (Funk et al. 2009). Analyses based on both
morphological and molecular data show that the subfamilies
Barnadesioideae and Asteroideae are monophyletic, where-
as the status of Cichorioideae remains uncertain although
molecular findings strongly support the monophyly of this
subfamily; however, the morphological data indicate that
Cichorioideae is most likely paraphyletic (Bremer et al.
1992; Anderberg et al. 2007; Funk et al. 2009).

Taraxacum Wigg. (dandelions) is a very large cosmopol-
itan genus belonging to the subfamily Cichorioideae, the
tribe Cichorieae and the subtribe Crepidinae (Anderberg et
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al. 2007; Kilian et al. 2009). Taraxacum comprises both
diploid (2n02x016) and polyploid species, mainly triploids
(2n03x024) or tetraploids (2n04x032), but higher ploidy
levels have also been reported (Kirschner and Štěpánek
1996). It is well known that in angiosperms, polyploidy is
closely connected with apomixis (Hörandl 2010). In
Taraxacum, moreover, there is a correlation between the
ploidy level and the mode of reproduction. The great ma-
jority of dandelions are polyploids and obligate or faculta-
tive agamosperms that produce seeds asexually, whereas
rarely occurring diploid species reproduce sexually
(Richards 1973, 1989). Apomixis in Taraxacum includes
three elements — meiotic diplospory (Gustafsson 1946;
Nogler 1984; Asker and Jerling 1992), parthenogenesis
and autonomous endosperm formation (Richards 1973).
The co-occurrence of apomixis and sexual reproduction is
the main evidence that Taraxacum is an aggregate of a large
number of species and that its taxonomy is very complicated
(Kirschner et al. 2003). The infrageneric classification of
this taxon is based on the sectional concept (Kirschner and
Štěpánek 1997). The genus is divided into over 55 sections
comprising about 3,000 species and new species are still being
described (Záveská Drábková et al. 2009; Mártonfiová et al.
2010; Uhlemann 2010; Marciniuk et al. 2012).

Numerous species of Taraxacum from Europe have been
studied embryologically (Małecka 1971, 1973 and referen-
ces therein; van Baarlen et al. 2000, 2002). These investi-
gations were focused on the analysis of female and male
meiosis, on embryo development and endosperm formation,
whereas the ovule structure has not received sufficient at-
tention. As it is well known, ovules are the precursors of
seeds and play an essential role in sexual as well as in
apomictic reproduction of angiosperms. Currently, the
results of classical and molecular genetic analysis of ovule
development indicate that the sporophytic tissues of the
ovule influence female gametophyte development, guidance
of pollen tube growth, fertilisation, embryogenesis and fi-
nally seed formation (for a review, see Gasser et al. 1998;
Skinner et al. 2004; Endress 2011). Moreover, the papers
cited point out that ovules are very desirable structures for
the study of the regulation of morphogenesis; thus, an un-
derstanding of ovule ontogeny will be helpful in elucidating
various aspects of plant development. It should also be
emphasized that certain ovule features are relatively conser-
vative in evolution and have a very important taxonomic
significance (Bouman 1984; Endress 2011).

To date, research data on details of the anatomy of the
dandelion ovule are missing. Furthermore, it is worth men-
tioning that the ultrastructure of the ovule in the Asteraceae
family has rarely been investigated, e.g., the most detailed
study is about the model crop Helianthus (Newcomb 1973a,
b; Yan et al. 1991) although Cynara cardunculus has also
been investigated (Figueiredo et al. 2006).

The first aim of this study was to perform a structural
description of dandelion ovules based on observations with
light and electron microscopy. The results obtained would
be the basis for further analyses of ovule structure within the
tribe Cichorieae. A comparison of ovule anatomy in differ-
ent species may provide useful data for taxonomical and
phylogenetical investigations not only within the subfamily
Cichorioideae but also for the entire Asteraceae.

The second aim of this study was to check whether there
are differences in the ovule structure between sexual and
apomictic Taraxacum species. We analysed the anatomy of
the ovules in two Taraxacum species from the most com-
mon section Ruderalia that differ in ploidy level and repro-
duction mode: sexual T. linearisquameum Soest (2n02x0
16) and apomictic T. gentile G.E. Haglund & Rail. (2n03x0
24) (Góralski et al. 2009; http://www.binoz.uj.edu.pl).

Materials and methods

Plant material

Inflorescens of Taraxacum gentile were collected from a
natural population in Chojniki near Baranowo in Poland
(53°07′42″N, 21°23′14″E). Flowers of T. linearisquameum
were sampled from specimens growing in the private col-
lection of J. Marciniuk in Siedlce (52°10′49″N, 22°18′26″
E); these plants were obtained from seeds collected by dr. R.
Vašut in Moravian Silesia in the Czech Republic. Studies
were carried out on capitula just before anthesis.

Methods

Light and electron microscopy studies

For clearing technique, inflorescences were fixed in FAA
(40 % formalin/glacial acetic acid/70 % ethanol, 5:5:90, v/v)
for 24 h and stored in 70 % ethanol. Than isolated ovaries
were dehydrated for 1 h in 70 %, 80 %, 90 % ethanol (one
change) and 100 % ethanol (three changes), and incubated
(for 1.5 h) in one change of ethanol/methyl salicylate (1:1),
one change of ethanol/methyl salicylate (1:3) and two
changes of 100 % methyl salicylate (Young et al. 1979;
Musiał et al. 2012). Cleared ovaries were examined with a
Nikon Eclipse 80i microscope equipped with Nomarski
interference contrast optics.

The procedure for preparing samples for TEM was as
described earlier (Płachno and Świątek 2009, 2010). Briefly,
for the electron microscopy studies, ovaries were fixed in
2.5 % formaldehyde and 2.5 % glutaraldehyde in a 0.05 M
cacodylate buffer (pH 7.0) for 2 days. The material was
postfixed in 1 % OsO4 in a cacodylate buffer for 24 h at
~4 °C, rinsed in the same buffer, treated with 1 % uranyl
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acetate in distilled water for 1 h, dehydrated with acetone
and embedded in an Epoxy Embedding Medium Kit
(Fluka). Semithin sections were stained with methylene blue
and examined using an Olympus BX60 microscope. The
periodic acid-Schiff (PAS) reaction was used for visualisa-
tion of the total carbohydrates of insoluble polysaccharides
(Wędzony 1996). Additionally, material embedded in par-
affin (Musiał et al., 2012) or in Technovit 7100 (Kulzer,
Germany) (Popielarska-Konieczna et al. 2012) was also
used for (PAS) reaction. All results were the same: total
carbohydrates of insoluble polysaccharides stain magenta
to purplish red.

Ultrathin sections were cut on a Leica ultracut UCT
ultramicrotome. After contrasting with uranyl acetate and
lead citrate, the sections were examined using a Hitachi
H500 electron microscope at 75 kV.

Results

Florets of dandelion species possess an inferior and uniloc-
ular ovary with a single ovule on the basal placenta
(Fig. 1a). The ovaries as well as the ovules of the species

studied differ slightly in shape. In T. linearisquameum, the
ovary and the ovule are more elongated than in T. gentile
(Fig. 1a–c). The surface of the ovaries is smooth in the basal
and central part, while it is pleated in the apical region
(Fig. 1a–d). Visible outgrowths form spikes on the surface
of the achene. The mature ovule is anatropous, unitegmic
and tenuinucellate (Fig. 1a) as it is known in other
Asteraceae. Any notorious differences appeared in the anat-
omy of either the ovary or the ovule in the species exam-
ined. The ovary wall shows a zonal differentiation, which is
particularly visible in the central part (Fig. 1b, c). The cells
of the outer layers are smaller and closely packed, whereas,
the ones of the inner zone are elongated, highly vacuolated
and loosely arranged, parallel to the ovary axis (Fig. 1d, e).
A single-layer epidermis is formed by vacuolated cells in
which the nucleus is usually located in the basal part of the
cell and the plastids, including prolammellar bodies, are
clearly visible in TEM (Fig. 2a). The emphasised external
walls of the epidermal cells are thickened and contain an
electron-dense, thin layer of cuticle. Numerous branched
plasmodesmata are present in the inner walls of the epider-
mis and the subepidermal parenchyma cells (Fig. 2a).
Within the inner zone of the ovary wall, the cytoplasm of

Fig. 1 Anatomy of the ovary
and ovule of Taraxacum
linearisquameum (a, b) and T.
gentile (c–e). a Ovary with
anatropous, unitegmic,
tenuinucellate ovule; image was
obtained from unstained,
cleared material using
Nomarski DIC optics. b, c
Median longitudinal sections
through the ovaries and ovules;
arrowheads indicate layers of
thick-walled integumentary
cells; framed part is shown in
panel d. d Semithin section
through the outer part of the
ovary wall in the apical region;
outgrowths (ovo) visible on the
surface. e Semithin section
through the inner part of the
ovary wall. ch chalaza, ep outer
epidermis of integument, es
embryo sac, f funiculus, int in-
tegument, mc micropylar canal,
ov ovary wall, arrow cuticle,
stars intercellular spaces. Bars:
a–c 100 μm; d, e 20 μm
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the cells is rich in ribosomes and mitochondria with well-
developed cristae (Fig. 2b, c). There are also plasmodesmata
in the cell walls (Fig. 2b).

The ovule, at the mature female gametophyte stage, has a
considerably thick, multilayer integument, with a heteroge-
neous structure (Fig. 3a), as occurs in the ovary wall. The
female gametophyte is surrounded by a layer of endotheli-
um which differentiates from the inner epidermal cells of the
integument (Fig. 3b). A dense cytoplasm of radially
stretched endothelial cells contains an irregularly shaped
nucleus and numerous dictyosomes, plastids and

mitochondria (not shown). The cell walls adjacent to the
embryo sac are distinctly thickened and there is no plasmo-
desmal connection between the endothelium and the central
cell of the embryo sac (Fig. 3b). However, there are wall
ingrowths on the wall of the central cell adjacent to the
endothelium cells (Fig. 3b). The cell walls of the integumen-
tary layers next to the endothelium are extremely thick
(Figs. 1b,c and 3b) and PAS positive (Figs. 3a and 4b). The
middle lamella is clearly visible as an electron-dense layer
between the waving, thick-walled cells, and these special
walls have an open, spongy structure (Fig. 3c, d). Due to the
gradual excessive thickening of the walls, the cells’ lumen is
reduced considerably (Fig. 3b–d). Alterations of the cell walls
and a progressive degeneration of the cells surrounding the
endothelium take place especially around the chalazal and the
central part of the embryo sac (Fig. 3a). The integumentary
cells around the micropylar region have thin walls (Figs. 3a
and 4a,b), and the cells in direct contact with the micropylar
canal are distinguished by a high metabolic activity. The
centrally located nucleus and a few small vacuoles are seen
in their dense cytoplasm, which is rich in dictyosomes,
vesicles differing in size, profiles of rough endoplasmic retic-
ulum, mitochondria and plastids (Fig. 3e). Among the ovules
of the species investigated, some differences in the shape of
the micropylar canal can be observed. It is more elongated and
narrow in the sexually reproducing T. linearisquameum,
whereas in the apomictic T. gentile it is wide but shorter
(Fig. 4a, b). In both species, the ovule’s micropylar canal is
filled with an extracellular matrix which reacts positively to
PAS (Figs. 3a and 4b). There is also no special deposition of
wall material in the integumentary cells situated on the outside
of the thick-walled zone. The outer layers of the integument
are composed of thin-walled, vacuolated cells (Fig. 3a, f). At
the chalazal pole of ovules of both species studied, a group of
compactly arranged and distinctly smaller cells stands out just
below the epidermis (Fig. 4c, d). Some of these cells have a
dense cytoplasm and possess large nuclei.

Fig. 2 Ultrastructure of the ovary wall cells of T. gentile. a Section
through an epidermal cell and a subepidermal parenchyma cell; arrows
show branched plasmodesmata, insert branched plasmodesma at a
higher magnification. b Fragment of parenchyma cells within the inner
zone of the ovary wall; elipse plasmodesmata (insert) at a higher
magnification. c Section through a parenchyma cell from the inner part
of the ovary wall showing a dense cytoplasm rich in organelles.
Arrowheads pores in nuclear envelope, CW cell wall, D dictyosome,
Er endoplasmic reticulum, m mitochondrion, N nucleus, n nucleolus, P
plastid, pd plasmodesma, stars prolammellar bodies, V vacuole. Bars:
a 0.75 μm, b 1.5 μm, c 0.625 μm
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Fig. 3 Anatomy and ultrastructure of T. gentile ovule; semithin section
(a), electron micrographs (b–f). a Ovule after PAS reaction, note PAS-
positive extremely thick walls (star) of the integumentary cells in the
layers adjacent to embryo sac (es); ch chalazal pole, mi micropylar
pole, framed part shown in panel b. b Section through the endothelium
surrounding the embryo sac (es) and thick-walled integumentary cells;
arrow ingrowths on the wall of the central cell, EN endothelium,
N nucleus, Pr remains of protoplast, star prominent thick cell wall. c
Ultrastructure of integumentary cells in the chalazal region of the
embryo sac; CW cell wall, N nucleus, arrow middle layer. d Thick-
walled integumentary cells, note the spongy structure of the walls
(stars), remains of the protoplast (Pr) and waving middle lamella
(arrow) between prominent thick cell walls. e Ultrastructure of integ-
umentary cells in direct contact with the micropylar canal; d dictyo-
some, Er endoplasmic reticulum, m mitochondrion, N nucleus, n
nucleolus. f Section through the thin-walled integumentary cells situ-
ated on the outside of the thick-walled zone; N nucleus, star extremely
thick wall. Bars: a 50 μm, b 2.6 μm, c–e 1 μm, f 2 μm

b



Discussion

Studies on Arabidopsis ovule mutants in recent years have
clearly indicated crosscommunication between the

genetically distinct gametophyte and the surrounding spo-
rophytic tissues. Moreover, the studies point out that the
formation of viable angiosperm seeds is also strongly de-
pendent on the proper interactions between the seed coat,
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the embryo and the endosperm (for a review, see Ingram
2010; Bencivenga et al. 2011). Although apomixis is com-
mon within Asteraceae (Noyes 2007), the relationships be-
tween the sporophytic ovule tissue and the initiation of the
diplosporous or aposprous embryo sac formation are poorly
recognised. However, some progress has already been
made, e.g., in Hieracium (Asteraceae), where it has been
demonstrated that the initiation and progression of apomic-
tic processes is regulated by funiculus growth and auxin
transport (Koltunov et al. 2001; Tucker et al. 2012). Our
comparative study of the anatomy of ovules in the sexually
reproducing dandelion T. linearisquameum and the apomic-
tic T. gentile revealed no essential differences in their struc-
ture. The occurrence of a characteristic zonal differentiation
of the integument with well-defined layers of thick-walled
cells surrounding the endothelium is not dependent on the
ploidy level and, at the same time, on the mode of repro-
duction. Koltunov et al. (1998) observed another type of
changes involving an intensive liquefaction of the integu-
ment cells closest to the endothelium in Hieracium ovules,

but this liquefied inner core occurred in both sexual and
apomictic plants. A similar pattern of wall modifications as
the one in Taraxacum has been described in the inner layers
of the integument in Helianthus annuus (Newcomb 1973a,
b), Bellis perennis (Engell and Petersen 1977) and two
apomictic species of Chondrilla (our interpretation of
micrographs from Kościńska-Pająk 2006). On the other
hand, in the ovules of Cynara cardunculus, in the vicinity
of the endothelium, the walls of the integument cells
remained thin; whereas, thick-walled cells were observed
only in the chalazal region of the embryo sac, where
specialised nucellar layers formed a hypostase around the
podium (Figueiredo et al. 2006). It is also worth mentioning
that during the analysis of developmental processes in
Rudbeckia bicolor, from Asteraceae (Musiał et al. 2012),
we observed neither special deposition of cell wall material
in the inner layers of the integument nor a liquefied zone
surrounding the integumentary tapetum (Musiał, unpub-
lished data). Thus, the examples of C. cardunculus and R.
bicolor show that such a special differentiation of the

Fig. 4 Anatomy of the ovule of
T. linearisquameum (a, c) and
T. gentile (b, d). a, b Semithin
sections through the micropylar
part; arrow thin-walled integu-
mentary cells; en endothelium,
es embryo sac, mc micropylar
canal, s synergid, star layers of
thick-walled integumentary
cells. c, d Semithin sections
through the chalazal region of
the ovule; arrow cuticle, ep
outer epidermis of the integu-
ment, ov ovary wall, star group
of compactly arranged small
cells. Bars020 μm
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integument is not specific to all the members of Asteraceae
and broader comparative studies on the anatomy of ovules
are necessary to determine whether this may be a feature of
taxonomic importance. According to Anderberg et al.
(2007), within the subfamily Cichorioideae, Taraxacum,
Chondrilla and Hieracium are included in the tribe
Cichorieae, but in different subtribes, Crepidinae and
Hieraciinae, respectively. Likewise, Helianthus and
Rudbeckia, representing the subfamily Asteroideae, tribe
Heliantheae, have differences at the level of subtribe, name-
ly Helianthinae and Rudbeckiinae. These data suggest that
the pattern of anatomical structure of the integument might
be useful in Asteraceae classification at the subtribe level,
but, again, more extensive studies are required.

Concerning ultrastructure, the thick walls in the dandeli-
on integument cells resemble a mosaic structure alternating
with electron-dense bands, which has previously been
reported in the epidermal cell walls of mucilaginous leaves,
e.g., in Spartocytisus filipes and in members of the
Passerina genus (Lyshede 1977; Bredenkamp and van
Wyk 1999) or in the mucilage cells of Araucaria angustifo-
lia mesophyll (Mastroberti and de Araujo Mariath 2008).
The positive result of PAS reaction indicates that the depos-
ited wall material is rich in water insoluble polysaccharides
with 1,2-glycol groups, e.g., pectins. It may possibly pro-
vide the necessary nutrients for the proper nourishment of a
mature female gametophyte and then of a proembryo.
Prominent thick cell walls rich in pectins are typical of the
special nutritive tissue that occurs in the ovules or placenta
of species of Utricularia and Genlisea (Płachno and
Świątek 2008, 2009). Furthermore, in the case of
Hieracium, Koltunov et al. (1998) considered that the accu-
mulation of a large pool of nutrients around the embryo sac
may favour the evolution of the apomictic trait within the
genus. In Taraxacum, further investigation is needed to
elucidate whether the integument layers adjacent to the
endothelium are involved in seed coat differentiation or
whether this wall material dissipates during seed develop-
ment as was reported for Hieracium (Koltunov et al. 1998).
Some changes in the dandelion integument cells (reduction
of protoplast size, enlargement of extracellular matrix) re-
semble programmed cell death (PCD); however, future de-
tailed ultrastructural studies and also TUNEL reaction
should be done to prove this. PCD occurs in plants at all
stages of the life cycle. Well known examples of PCD in
plants are reproductive tissue, e.g., tapetal cells, nucellar
cells, non-functional megaspores, synergids (e.g., Papini et
al. 1999, 2011; Fiordi et al. 2002; Brighigna et al. 2006).

This is the first structural description of dandelion ovules
based on observations with light and electron microscopy.
Although both species studied differ in the ploidy level and
the mode of reproduction, their ovules do not show signif-
icant differences in their anatomical structure. The special

feature of the dandelion ovule is the presence of thick-
walled cells in the inner integumentary layers adjacent to
the endothelium. Further studies on the anatomy of ovules
are required to explain whether this may be a feature of
taxonomic importance. A comparison of ovule anatomy in
other species may provide useful data for both the taxonom-
ical and phylogenetical investigations not only within the
subfamily Cichorioideae but also for the entire Asteraceae.
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